THESIS FINAL REPORT

UNIVERSITY RIDGE AT EAST STROUDSBURG UNIVERSITY EAST STROUDSBURG, PA

PREPARED FOR: JAMES FREIHAUT, PH.D.

BY: MATTHEW CARR MECHANICAL OPTION APRIL 12, 2007

University Ridge at East Stroudsburg University

Project Team:

Owner: University Housing, Inc. GC: Capstone Building Corp. Architect: Design Collective, Inc. Structural Engineer: Greenman-Pedersen Inc. MEP Engineer: Greenman-Pedersen Inc. Civil Engineer: Greenman-Pedersen Inc.

-

Mechanical System:

- Split system air handlers ranging from 2.5 to 3.5 tons per unit
- Operable windows provide natural ventilation

Electrical System:

- 208/120V 3 phase, 4 wire service provided by Met-Ed with a transformer for each building
- Incandecent Luminaires used for apartment lighting
- 125 KW, 208/120V 3 phase, 4 wire emergency fuel fired generator

Structural System:

- Reinforced concrete footing and foundation wall system
- Conventional wood construction is used in the framed walls
- Pre-engineered roof trusses compose the roofing system

Project Information:

Size: 140,000 ft², 544 Beds Cost: \$27,425,000 (Overall Project Cost) Delivery Method: Design-Build Stories and Buildings: 10 buildings at 3 Stories above grade Function: Student Residence Complex with Amenity Space in a Central Community Building Occupancy: Student Apartments, Four Bedrooms per Apartment, Community Buildging with Lounges, Offices, and Conference Room

Architecture:

- Rocky site features dramatic topography
- Site is split into an an upper and a lower quad
- Hilltop location leads to commanding vistas toward the Delaware Water Gap
- Utilization of stone foundation walls, clap board siding, board and batten siding, large brackets and deep roof overhangs incorporates traditional design elements of Pocono Lodges and railroad depots found in the area

Matthew Carr Mechanical Option

http://www.arche.psu.edu/thesis/eportfolio/2007/portfolios/MWC138/

PENNSTATE

Matthew Carr AE 482 April 12, 2007

Table of Contents

		0	
Abstract		2	
Executive Su	4		
Existing Mec	hanical Systems	5	
Introduction	to Redesign	6	
Mechanical S	System Redesign	11	
Redesign Ana	alysis	24	
Photovoltaic	Breadth	31	
Structural Breadth			
Conclusion a	nd Recommendations	35	
References			
Acknowledgr	nents	38	
Appendix A:	Mechanical Load Calculations	39	
Appendix B:	Electric Utility Bill	43	
Appendix C:	Pure Comfort 240M Equipment Data	46	
Appendix D:	Cooling Tower Equipment Data	52	
Appendix E:	Pump Selections	54	
Appendix F:	Mechanical Energy Analysis Data	57	
Appendix G:	Photovoltaic Analysis	66	

Executive Summary

The following report contains a proposed redesign to the mechanical system for University Ridge at East Stroudsburg University from a conventional duct furnace system to a more environmentally friendly cogeneration system. University Ridge is a 140,000 ft² apartment complex which consists of ten buildings for student housing.

The following thesis will illustrate the effects of reducing the complex's dependency on the electrical grid. A combined heating, cooling, and power system is implemented in order to take care of the buildings thermal loads and reduce the amount of power purchased. This system is able to do this by harnessing otherwise waste exhaust heat from the production of electricity. Absorption cooling also harvests the waste heat which it uses as a "free" source of energy. Also, a chilled water storage tank is used in order to balance the buildings ever changing load thus resulting in a more efficient chiller operation. Additional equipment which will accompany the system are pumps, cooling towers, and piping which will be sized.

The new turbines will be located outside of the pump house where the absorption chiller will be located. The use of these efficient turbines will reduce the amount of pollutants released to the atmosphere as a result of using a clean burning fuel and the flattening of the loads on the prime mover. The additional first cost of this cogeneration system will be analyzed and a payback period will be identified and the systems feasibility will be justified from this.

Existing Mechanical Systems

The following is a list of major system components based on design data from University Ridge at East Stroudsburg. These buildings are each 4 stories and have an overall size of 140,000 ft². The primary use of the facility is apartments for student housing. There is also a commons area with lounges, offices and conference rooms. The following is a basic summary of the mechanical systems for these buildings.

University Ridge contains 153 apartment units with a dedicated duct furnace air handling unit for each of the units. These units are purely re-circulatory. Heating capacity is supplied by hot water coils with hot water supplied from the domestic water heaters. Cooling comes from individual condensing units for greater control. The duct furnace air handlers for the commons area are individually gas fired and are cooled in the same was as the apartments.

The water heaters that supply domestic hot water and hot water for the duct furnaces fired by natural gas and are sized according to the National Plumbing Code with adjustments for the HVAC demand. All other water heaters are electrically heated for spaces such as public bathrooms and mechanical rooms.

There are individual exhaust fans for each bathroom in which they are controlled intermittently.

Introduction to Redesign

Alternatives Considered

There are a few alternatives that would be available as viable mechanical systems. A few of the following were considered during design but due to financial restraints were not used. Due to these financial restraints, University Ridge offers many different options for a redesign alternative.

An initial redesign possibility would be the use of 4-pipe chiller and boiler system in each building to supply the heating and cooling. A replacement of the airside system would also be required and would be done so with the use of stacked vertical fan coils. The intent of this would be to increase the efficiency and lower the operating cost. However, this type of system ultimately has a higher initial cost than the original system and would be justified by a payback period. A variation of this type of system would be to use centralized boilers and chillers in an existing service building and run hot and chilled water to the buildings and using the same airside system. Furthermore, this system is not the most overall efficient system for a project like this.

A second option would be the utilization of a geothermal grounds source heat pump (GSHP) system. However, the site sits on a ridge where the ground is extremely rocky. Therefore, the drilling of wells for heat exchanging loops would be inefficient and very costly. This option was considered in the original design and because of the previous problem was not used and for the purposes of the redesign will not be used because of its ineffectiveness.

A third option would be the use of a combined heat and power cogeneration system. The use of this type of system has a couple of options available to produce heating, cooling, and electricity. Analysis of turbines, reciprocating engines, and various new fuel cells will be done to determine which of the previous would be the best solution and which one is more efficient to accomplish the required tasks. The potential benefits of the payback period and increased efficiency will also be determined.

Scope, Goals, and Justification

The main purpose of the mechanical system redesign for University Ridge at East Stroudsburg University is to see if the complex and university will benefit from creating its own power. The apartment complex would have had an easy integration as there is already a pump house and service trenches which could have been expanded to accommodate a cogeneration system.

With an increasing awareness of energy use and pollution, the overall goal of the redesign for University Ridge is to centralize the mechanical systems while reducing operating costs and increasing overall energy efficiency. Therefore, a combined heat and power, CHP, system was a natural choice to accomplish the above goals.

The CHP system will produce electricity while providing heating, cooling, and domestic hot water through the utilization of a prime movers waste heat such as exhaust gases. Natural gas will be used to fire the prime mover since natural gas is used to fire the domestic hot water heaters. The prime mover will produce enough electricity for the complex and any excess will be sold back to the power grid or used else where on the ESU campus. It will also produce enough thermal energy to provide enough heat to maintain thermal comfort in the buildings.

The CHP system will also have to be designed to either the peak thermal energy load or the peak electrical load. After determining the method as to which the prime mover will be sized, prime movers will be analyzed as to how well they will perform. Deciding criteria for selecting a prime mover will be characteristics such as how well they follow the load, efficiency of the unit and other defining characteristics. A variety of natural gas reciprocating engines and natural gas turbines will be analyzed for the CHP redesign.

The waste heat from the generation of electricity will be used for space heating through the use of heat exchangers. This waste heat will be used for both heating and for cooling where cooling uses absorption chillers. The absorption cooling process uses the waste heat as free energy to regenerate brine during the heat exchange cycle. Moreover, chilled water storage will be used to even out the load on the chiller. This will result in an overall increase in efficiency because the chillers will be running at an optimal rate.

In conclusion, in optimizing the mechanical system, the goal is to increase the way energy is used to produce heat and electric power for the buildings. This increase in efficiency is due to the production of heat and electricity from an onsite source, thus reducing transmission inefficiencies and possible generation inefficiencies from off site sources. Also, chilled water production will be optimized using the waste heat from power generation and the balancing of the cooling load using chilled water storage. This proposed redesign is assuming that the system can be integrated with the existing duct furnaces and the addition of the proposed equipment. The redesign will also reduce the need for the buildings to be dependent on the power grid.

NNSTATE

Matthew Carr AE 482 April 12, 2007

Mechanical Design Conditions

In order to gain accurate data on the buildings loads and profiles, simulations must be used to calculate these loads and profiles. This data must be obtained for critical analyses of the buildings cooling, heating, and power consumption needs. The mechanical loads used in this report were generated by the use of Trane's Trace 700 Load calculation program. These loads calculated from the use of Trace include the peak design criteria for heating, cooling and power needed to size equipment. Also, the load profiles generated hourly over the course of a year give an estimate as to how energy will be needed over the course of a day. These profiles are calculated for design days, weekdays, weekends, and holidays. Monthly total usage is also determined from these calculations. These loads can be found in Appendix A.

Using the capabilities of Trace's Load calculation program, each spaces load was determined and can be added up to determine the overall capacities required for the centralization of the CHP system. Since the building has already been constructed, accurate wall type U-values and window U-values and shading coefficients were known. Also, miscellaneous internal loads were assumed using conventional power densities and miscellaneous appliance loads such as computers and refrigerators. Applying these values to the space with the known occupancy densities and weather data, accurate internal and thermal loads were obtained. However, the occupancy schedule was a variable since it is a collegiate residency and an occupancy schedule is difficult to determine. Outdoor air design conditions were based on ASHRAE weather data provided by TRACE for Allentown, PA.

Electricity use was also determined using Trace. Values for hourly demand and monthly use were obtained with the assumptions of power densities from lighting and appliances. Moreover, real data from an electric utility bill was used to make sure the values obtained in the program were close to the actual billing data. Using the obtained electrical data from Trace and looking at actual building electric profile data, a daily electric profile was assumed.

These results obtained from Trace and known data will be used to size the CHP system in the following sections. Profiles will be shown and utilized for analyses in later sections.

Combined, Heat, and Power Concepts

The basic concept of a cogeneration is fairly simple. Power is produced on-site to negate the inefficiencies caused in the transmission of electricity. With the production of electricity using a fuel, in this case natural gas, exhaust is produced which contains useful energy in the form of heat. This "waste" heat can then be harnessed for heating and cooling purposes. The following diagrams are basic schematics as to how gas turbines and reciprocating engines operate to achieve combined heat and power.

Figure 1: Gas turbine operation

Figure 2: Reciprocating engine operation

The heat exchangers use the waste heat to heat spaces directly or for the use of regenerating heat for absorption cooling.

Mechanical System Redesign

Spark Gap Analysis

The calculation of a spark gap for the electric and natural gas costs is one of the first steps in determining the best solution for a CHP system. The spark gap is a ratio of the cost of electricity versus natural gas at the building location. This number can vary greatly depending on location due to how electricity is generated and how natural gas has to be transported.

In calculating the spark gap, utility costs were determined from an existing utility bill from Met-Ed and gas prices from DOE's website, which is located in Appendix B. The electric energy unit is then converted to \$/BTU and both are then multiplied by 1,000,000 BTU to get to dollars per MMBTU. The difference between the both energy sources is determined to be the spark gap. The calculation is worked out below.

Natural Gas:

\$1.33/therm

 $\frac{\$1.33}{therm} \cdot \frac{therm}{100,000BTU} \cdot 1,000,000BTU = \frac{\$13.30}{MMBTU}$

Electricity:

\$0.0919/kWh

 $\frac{\$0.0919}{kWh} \cdot \frac{kWh}{3,412BTU} \cdot 1,000,000BTU = \frac{\$26.94}{MMBTU}$

\$26.94 - \$13.30 = **\$13.64**

For CHP to be considered a feasible application, the spark gap should be no less then \$12.00/MMBTU. As shown above, the spark gap is fairly close to \$12.00 so the payback period and economic feasibility may not be at highly desirable levels.

Prime Mover Analysis

Fuel Cells

Fuel cells represent one of the cleanest and quietest methods of converting fuel into usable energy. This is done by converting the fuel, usually natural gas, from chemical energy into DC power and heat. A fuel cell is similar to a battery as it has an anode, electrolyte solution, and a cathode. Although fuel cells have a high efficiency and are capable of load following fairly well, they will not generate enough waste heat in order to meat the heating capacities needed. Also, fuel cells have a very high initial first cost relative to other prime movers and are unproven in long term use due to the technology being relatively new.

Reciprocating Engines

Reciprocating engines come in various forms of operating capabilities. The characteristics of these engines range from self ignited to diesel engines. They come in four-stroke and two stroke cycles and are capable of operating on a variety of different fuels such as gasoline, natural gas, diesel or multiple fuel operations. Reciprocating engines work on an open cycle, called the Otto cycle, that is to say that the cycle does not return to its original state point after a cycle is complete. Therefore, the ideal efficiencies are never realized due to this open cycle and is a function of the compression ratio.

These engines are available in a wide range of sizes and are efficient at small sizes. However, system maintenance is intensive due to the many moving internal parts. Also, reciprocating engines typically produce more pollutants compared to other prime movers. Another draw back is the amount of noise and vibration produced from the movement of the cylinders in the engine.

Gas Turbine Generator

Natural gas micro-turbines are a clean reliable way of generating electricity and heat for use in space conditioning. Gas turbines are typically applied to base loaded or peaking applications and are very reliable due to the few moving parts contained within them which intern leads to low maintenance costs. The fewer amount of moving parts also results in reduce vibration and noise levels. These turbines are also small relative to other prime movers, are capable of high temperature heat recovery. However, gas turbines are not very good at load following and lose efficiency at part load.

It is these factors of simplicity, cost effectiveness and efficiency at base loading that have driven my decision for choosing gas micro turbines for this system redesign.

Prime Mover Selection

After considerable analysis of prime movers and their associated technology, it was determined that a natural gas turbine would be the best option. Keeping efficiency, reliability, and ease of integration and maintenance in mind, use of the UTC Power Pure Comfort Solution integrated micro-turbine chiller/heater power system will power and condition the University Ridge complex. The micro-turbines come in sets of four, five or six 60 kW micro-turbines which allows for more efficient part load conditions. These part load conditions are achieved by simply turning off successive turbines to achieve a desired output.

Efficiency and reliability of the systems gas turbines are reliant on the fact that there are fewer moving parts compared to reciprocating engines. However, regular maintenance is required about every 40,000 hours of operation.

The Pure Comfort system is very versatile as it can be run connected to the grid, as stand alone and in a dual mode. In this case, Pure Comfort Model 240M will be run connected in parallel to the grid in order to run at a base output of 230 kilowatts. Since there is not an overly large difference in the spark gap, the remaining electricity will be supplied from the grid. As mentioned before, if there is less of a demand for electricity, the system can be turned down in order to operate more efficiently. The following load profile was obtained using TRACE 700 and by looking at actual profiles to get a variance in demand and the maximum demand was calculated at 366 kilowatts.

At the above output levels, adequate capacity for heating and cooling are produced for space conditioning. A gross efficiency ranges from 69% for power and heating at 32° F to 85% at ISO conditions of 59°F. Electrical efficiency is at about 27%. All values indicated are at a Low Heating Value (LHV).

Another benefit of this system is that it can be placed outside thus skipping a whole set of other problems such as noise, vibration, space, maintenance, and safety issues with units placed inside. The units come standard with weather proof casing which enables them to be placed outside as can be seen in a previous installation below. Also, emissions are lower than most conventional power plants due to the use of natural gas and its high fuel efficiency. However, this natural gas must be boosted to a higher pressure in order for the unit to work properly.

Figure 4: Outdoor installation of Pure Comfort Model 240 M

Equipment data for the Pure Comfort 240M can be found in Appendix C.

Absorption Cooling

For the cooling side of the load, a standard equipped model 16DNP Carrier indirectly fired double-effect absorption chiller will generate chilled water instead of a standard electrically driven chiller. The waste heat from the exhaust gases of the micro-turbines is a "free" source of energy used to regenerate a lithium bromide (LiBr) solution and water absorption refrigerant to produce either chilled or hot water. The total capacity of the chiller specified in this instance is 124 tons. The design day load however is 178 tons so a chilled water storage tank must be utilized in order to balance the load and will intern increase the efficiency of the unit since it will be running constantly. A diagram of the operation of flow of solution is pictured below in Figure 5.

The output of the absorption chiller can be changed according to needs of operation. The efficiency of the unit, coefficient of performance (COP), in this instance for a 95°F day is 1.20. For this situation, continuous operation down to 25% can be obtained. This enables the chillers to follow the cooling load and integrate into the chilled water storage more easily if needed.

Different types of chillers can be used to process chilled water. Direct fired absorption chillers use an outside source of fuel to gain the heating capacity needed instead of the hot water which will be used in this instance. Also, there are single-effect absorption chillers which have a much simpler operation of cooling the chilled water but are less efficient than double-effect cooling. For this redesign the double-effect absorption chiller operates as follows:

- LiBr solution absorbs water vapor.
- The weak LiBr solution is pumped to the generators to be reconcentrated in two stages.
- The weak solution is then pumped to the high temperature generator to be heated and regenerated to a medium solution.
- The medium solution is pumped to the low temperature generator to become a strong solution.
- Condensed water vapor on the tube side is cooled and returned to a liquid state to be used again.
- Refrigerant water returns to the evaporator to start the cycle over.

Matthew Carr AE 482 April 12, 2007

This process is illustrated in the diagram below. A conventional electrically powered condenser is replaced by the LiBr strong solution and the refrigerant liquid thus saving electrical energy. A benefit of using an absorption chiller is the elimination of Chlorofluorocarbons (CFC's), which are often blamed for the depletion of the ozone layer.

Figure 5: Absorption Cooling Cycle

Heating Cycle

The heating cycle for the selected equipment is handled under the use of the flow through the absorption chiller. The flow through the chiller takes a different path through the absorption chiller. This flow does not use the condenser section of the chiller as it is not needed. This process uses the high temperature generator, evaporator and absorber sections to evaporate and then condense the refrigerant liquid over the hot water section. This cycle produces hot water at 140°F for use in the heating of the building. The existing duct furnaces are set up for this 140°F water and can be used with this system. The following diagram illustrates this heating cycle.

Figure 6: Heating Cycle

Cooling Tower

With the operation of an absorption chiller, the use of a cooling tower is needed for the process of using cooling water to cool the refrigerant and the LiBr solution in the section that acts as the condenser. This cooling water is sprayed over fill located in the cooling tower, which usually has a large surface area to increase heat transfer. As this liquid evaporates and absorbs heat from the fill, the warm cooling water from the absorption chiller is cooled down for recirculation through the chiller. However, since this is an open cycle, special care is needed in dealing with the cooling tower water. It must be treated so that it does not become contaminated. This water also must be replenished as a result of evaporation to the atmosphere.

The selection of the tower is dependent on the flow of the cooling water, the ambient temperature, and the temperature differential required by the chiller. The cooling tower selected is a Marley NC8302DL1 with one cell. This cooling tower was selected on the following criteria; 494 gpm, 95°F entering water temperature, 85°F leaving water temperature, and a 78°F wet-bulb temperature. The equipment data can be found in Appendix D. Also, for redundancy purposes, N+1 cooling towers should be installed for this application.

Chilled Water Storage

Absorption chillers operate at their peak efficiency when they are running at 100%. Therefore, in order to level the variant load in the building and keep the chiller running at constant speed, chilled water storage will be use to level the load and to also shift it. The shifting and leveling of the load also reduces the size of the chiller needed when operating on a load leveling partial storage scheme and hereby reducing the operating cost. The following graph is a representation of a design cooling day taken from TRACE and how the chiller and storage will handle the load. The areas below the blue line are when the system is charging during off peak hours and above the blue line is when the system is discharging during peak hours.

There are two kinds of thermal storage which can be implemented, sensible storage or latent storage. Latent storage uses the thermal capacity of water during phase change from a liquid state to a solid state or ice and also uses the sensible capacity. Sensible storage uses just the sensible of capacity of water with a change in water temperature. These two types of storage operate off of the same principle of loading and unloading as mentioned above.

For this case, a sensible storage system will be used. A vertical chilled water storage tank using naturally stratified water will store the

thermal energy. The warmer stratified water at the top of the tank is where the water will be supplied to the chiller or come from the cooling load at 59°F. Lower in the tank underneath the thermocline which is the boundary layer separating the high and low temperatures is the cold part of the tank. This section is at a temperature of 44°F which is the chilled water supply temperature from the chiller and to the load.

Sizing the tank depends on how much thermal energy needs to be stored in order to offset the load and maintain a constant chiller output. To determine the size of the tank, a general equation was used to achieve a tank size. The tank must discharge 11 hours of cooling at a total of 1905.8 tons. This intern gives a tank discharge of 173 ton-hr as a value for S in the following equation. The figure of merit FoM is a representation of the heat gain in the stored water and is usually a value of 0.9. As mentioned earlier, a delta T of 15° is used for the temperature differential in the stratification. The calculation is as follows.

 $Volume(gal) = \frac{1440 \times S[ton - hr]}{FoM \times \Delta T[F]}$

 $Volume(gal) = \frac{1440 \times 1905.8[ton - hr]}{0.9 \times 15[F]}$

Volume(gal) = 18,480 gal

However, I also used an alternative method of sizing the tank using a program called HVAC Solution. This tank size is based on a typical value of 100gal/ton. A tank size of 22,250 gal was calculated assuming a tank usability factor of 80%. Using this program directly links the storage tank to the chiller and the load. The schematic and sizes can be seen in Figure 8 below.

Use of the tank will be determined by controls based on the demand of the cooling system. An ample amount of chilled water will be stored to offset the peak load of the system. Whenever the system is not in peak load, the chiller can directly handle the load if needed or store enough chilled water to offset the peak load. Operating as such reduces the required size of the chiller needed.

Pumps and Piping

Due to the addition of the equipment, pumps will have to be sized to supply the chilled, hot and cooling water for the system. Also, piping has to be run to the buildings from the pump house where the CHP and other units will be located. Pumps must be sized in order to distribute the hot and chilled water throughout the site. The following diagram is a calculation produced by HVAC Solutions. The length of pipe, flows and loads were put in from previously gathered data. From this data, the pumps can be sized using Bell & Gossett's website.

Figure 8: Cooling Schematic

The pumps for the chilled water and hot water system are both sized at the same size since they have the same flow rate and head loss due to the pipe sizes being the same. Four pumps Bell & Gossett 1510 1-1/2BCs will be needed to pump each system, three in parallel and one

for redundancy. Specific data and pump curves can be found in Appendix E. Cooling tower pumps to run the cooling water from the chiller will be sized at 385 gpm and 34 feet of head. One pump will run with another redundant pump.

Redesign Analysis

Cost Analysis

The previously selected equipment in the redesign will have a higher primary cost then the existing system due to its complexity. The first cost was calculated using R.S. Means Cost Data and must be calculated to compare to the first cost of the existing equipment. The initial cost of the existing HVAC system was determined to be \$2.1 after construction. The following table is the total overall cost of the additional equipment needed to achieve the cost. The equipment was determined from the above analysis and from the measuring of the site plan to price the piping. All costs are as installed.

Equipment	Size	Installed Cost	Quantity	Total
Prime Mover	240 kW	\$2,500	240	\$600,000
		\$95.50 (per		
Cooling Tower	205 (tons)	ton)	2	\$39,155
		\$1197 (per		
Absorption Chiller	142 (tons)	ton)	1	\$170,000
Storage Tank	-	\$17,000	-	\$17,000
Expansion tank	2 - 266 (gal)	\$3,325	2	\$6,650
		\$180 (per		
4" Service pad	2835 s.f.	c.y.)	35 (c.y.)	\$6,300
	1 1/2"			
Chilled Water Pumps	100gpm	\$3,875	8	\$31,000
Cooling Water				
Pumps	3" 385 gpm	\$6,175	2	\$12,350
				\$882 455

Table 1:	Redesign	Equipment
----------	----------	-----------

Pipe Size w/ Insulation	Length (ft)	Cost per I.f.	Cost & 10% for Fittings	Quantity	Total
1 1/4"	100	\$13.50	\$1,485.00	4	\$5,940.00
1 1/2"	100	\$14.72	\$1,619.20	4	\$6,476.80
2"	946	\$17.92	\$18,647.55	4	\$74,590.21
2 1/2"	41	\$23.97	\$1,081.05	4	\$4,324.19
3"	97	\$28.41	\$3,031.35	4	\$12,125.39
4"	556	\$37.65	\$23,026.74	4	\$92,106.96
5"	273	\$57.25	\$17,192.18	4	\$68,768.70
					\$264,332.24

As seen in Tables 1 and 2 above, the installed cost is relatively low for a CHP system. The prime mover cost is based on average costs of similar sizes as described by RETscreen as the manufacturer was unable to quote a price for this use. This total installed cost of the system would also include the initial cost of the original system as this application is just an addition added on to reduce operating costs. A payback period will be determined in the following energy analysis.

ENNSTATE

Matthew Carr AE 482 April 12, 2007

Energy Analysis

The following energy analysis was performed by a RETscreen International excel spreadsheet designed specifically for the calculation of energy use of CHP systems. RETscreen is a program run by the Canadian government which encourages clean energy use and provides a number of programs which help designers make decisions in clean design. This CHP program was used to calculate the yearly load profiles given the peak cooling, heating and power loads. These loads were calculated earlier with the use of Trace 700.

The loads were entered into the program along with energy costs and a load characteristic chart was generated. Also, the power gross average loads were entered to simulate the electricity use of the system. After all loads and energy costs were entered, a base case electricity cost was calculated while the proposed case energy cost will be produced later.

Inputs for the type of prime movers, chillers and heaters are input after the load data is entered. The prime mover and absorption chiller equipment data which were selected are contained in a database and the data is directly inserted into the program. However, the chiller was not at the correct size which is specified with the selected equipment and had to be adjusted accordingly. Also, to trick the program into thermal storage, free cooling was selected as to serve the extra peak load. For the gas turbine, the gas price per mmBTU and the redesigned equipment were input. The heat rate and heat recovery efficiency was calculated using the tool menu of the program. Also, the operating strategy was selected as heating load following as this is how the system will operate.

For the cost analysis section of the program, the costs as calculated from above were input into the spreadsheet. This cost data will produce a payback period in the financial summary.

Greenhouse Gas emissions can also be calculated with the use of this tool. The program utilizes the capacity of the system, the efficiencies and the fuel use to calculate the amount of tons of CO_2 produced from the system. The proposed case is then compared to the base case and a difference is calculated. The national grid average for the tons of CO_2 produced per MWh of electricity was used for all sources of fuel for

the base case. In this case, the proposed system acts as if 48 cars and light trucks are taken off the road per year.

Finally the financial summary calculates the payback of the proposed system. Due to the high efficiency of the unit selected and the relatively low price of the equipment, the simple payback period of the system is estimated at about 14.8 years with an inflation rate of 3.0% and fuel inflation rate of 2%. As a result of this time period for a payback and given the small spark gap for the site, a university which is energy and environmentally conscientious will most likely implements this system as it is economically feasible.

All of the output data for RETscreen for this CHP system comparison can be viewed in Appendix F.

Emission Analysis

The energy used in a CHP system should always be less than a conventional system. This reduction is a result of producing two forms of energy simultaneously therefore resulting in reduced emissions as well.

As mentioned before the amount of carbon dioxide produced for the base case is estimated on yearly basis and beats the production of the national grid. Also, emissions data is provided for the Pure Comfort CHP system. Emission of nitrogen oxide (NO_x) , hydrocarbons, and carbon monoxide are provided by the manufacturer for this prime mover. These emissions are produced at an amount of 9ppmv, 9ppmv, and 15ppmv respectively at a rate of 15% excess O₂. Translating this data using the charts below and converting to Ibm/kWh, the following values for the prime mover can be seen in Table 3. Also, these values are compared to the national grid average in a Table 4 with thanks from James Freihaut for use.

Ibm Pollutant /kWh Prime Mover						
Fuel Particulates SO2/kWh NOx/kWh CO/kWh						
Nat. Gas.	2.37E-04	n/a	2.15E-04	8.60E-05		

		Ibm Pollutant _j /kWh U.S.			
Fuel	% Mix U.S.	Particulates	SO₂/kWh	NO _x /kWh	CO₂/kWh
Coal	55.7	6.13E-04	7.12E-03	4.13E-03	1.20E+00
Oil	2.8	3.03E-05	4.24E-04	7.78E-05	5.81E-02
Nat. Gas	9.3	0.00E+00	1.26E-06	2.36E-04	1.25E-01
Nuclear	22.8	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Hydro/Wind	9.4	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Totals	100.0	6.43E-04	7.54E-03	4.44E-03	1.38E+00

 Table 3: Prime Mover Emissions

Table 4: National Emissions

Matthew Carr AE 482 April 12, 2007

It is as expected that the proposed CHP system will beat the national average due to the overall fuel efficiency of the system and the use of natural gas to drive the prime mover.

Electrical Integration

Electrical integration can be done with relative ease as each building is equipped with its own transformer which is connected directly to the gird. A main distribution panel will need to be located at the prime mover and will be interconnected to the electric grid. The selected prime mover comes with the capacity to automatically handle the electrical load and will supply the needed grid power when required.

Photovoltaic Breadth

Photovoltaic Introduction

Photovoltaic (PV) cells capture the suns energy using chemical means to convert the energy into usable electricity. This analysis focuses on the use of thin films of material for the conversion of energy. There are four main types of thin film technology which are cadmium telluride, copper indium diselenide, amorphous silicon, and thin film silicon. This converted solar energy is converted directly into direct current electricity which needs to be converted to alternating current through the use of an inverter. Currently photovoltaic and solar energy in general has a very high initial cost and is very inefficient. Solar technology obviously works best in areas where sun light is abundant which is primarily in places closer to the equator. However, with the recent energy crisis, more northern countries are promoting the use of solar technology.

Photovoltaic Design

The use of PV cells in this case is based on the fact that the highest electrical peaks occur in the summer months due to the cooling process of buildings. Even though the location of the buildings is at a fairly high latitude, the use of PV cells will help offset the peak electrical load during the summer. Also, with the implementation of thin film amorphous silicon (a-Si) PV cells that are in the form of roof shingles, the buildings with their south facing gabled roofs make for a good implementation of this technology. The PV cell units act the same as shingles while producing DC electricity.

These photovoltaic roof shingles will also be analyzed in a RETscreen spreadsheet program. The cells were analyzed to determine how much power output will come from the units.

The initial step was to get a basic idea of what type of unit would work for this PV shingle integration. The units decided on are Uni-Solar's SHR-17 Solar Shingle. These units have a 20 year warranty, are designed for up to a 60 mph wind, and have a capacity of 17 Watts. This is the model which was used in the RETscreen model.

The effectiveness of the PV cells was tested to determine the economic feasibility and how much power can be produced given the 18° slope of the roofs. Also, the orientation of the buildings are 18° west of south, where south is the solar azimuth. In the analysis, the project location is the first criteria selected for weather and solar data. Next, the PV array is selected which includes the module type, manufacturer, efficiency and losses. The manufacturer's data for the Uni-Solar model SHR-17 is given in the data base and the previously mentioned efficiencies and losses are given. From this information, the renewable energy delivered to the load is 49.073 MWh annually. The solar resource and system load gives the weather data and the monthly average daily radiation for a horizontal surface for the location.

A cost analysis is then performed for the particular PV cell. It was found that each shingle costs \$170.28. With this cost information entered, it is now possible to get a payback period for the information entered. It was found that there is a simple payback period of 12.4 years and 8.9 years to a positive cash flow. The PV shingle manufacturers data and RETscreen calculation can be found in Appendix G.

Structural Breadth

Structural Breadth Introduction

Upon investigation of the structural system of my building, the use of metal studs for the structure will be compared as an economic and environmentally friendlier alternative to wood studs. The basis of this analysis will be the based on the fact that harvesting of trees reduces the amount of carbon dioxide which can be absorbed from the atmosphere. This sequestration of carbon dioxide by forests helps remove the amount of green house gas in the atmosphere. By using cold rolled metal studs which are at least 25% recycled on average will result reduced deforestation. Moreover, when metal framed structures are demolished, the structural framing can be recycled where as a wood structure will be disposed of in landfills.

The transportation of these two materials also has an effect on emissions. Depending on location, lumber products may have to be shipped from a much further distance than metal studs. In this instance for the location of my site, metal studs are shipped from producers in Pittsburg. Wood studs on the other hand come from as far away as parts of Canada. The following table shows average emissions for heavy trucks on a freeway.

	Local Road Emission Factors (grams/mile)					
	Year	voc	СО	NOx	PM-10	PM-10 (Exhaust only)
Single-Unit	2002	7.06	144.07	5.94	0.13	0.11
Gasoline	2010	1.87	34.32	4.09	0.09	0.07
Truck	2020	0.63	21.71	1.58	0.05	0.03
Single-Unit Diesel Truck	2002	1.18	6.86	14.95	0.42	0.38
	2010	0.74	3.39	7.27	0.17	0.13
	2020	0.52	0.71	1.27	0.07	0.03
Combination Diesel Truck	2002	1.22	7.64	16.07	0.41	0.37
	2010	0.78	3.52	7.45	0.17	0.13
	2020	0.56	0.78	1.29	0.07	0.03

Table 5: Truck Emissions

Moreover, since metal studs are lighter per unit than wood studs, the amount of metal studs which can be transported at one time is much higher thus reducing the amount of pollutants put into the air by the

transporter. The fact that the metal studs are also in the shape of a C means that more can be stacked together to conserve space.

Metal studs have the same structural capacity as their wood counterparts. This works towards an advantage of also bringing the weight of the structure down due to the fact that they are hollow. However, metal studs have some disadvantages such as buckling under high temperatures, oxidation and thermal short circuiting when not installed properly. Lastly, metal studs are competitive in cost with wood studs so they are not a financial issue. Therefore, metal studs would be a good alternative to wood framing as it can reduce green house gas emissions from its transportation and will reduce deforestation from the harvesting of lumber.

Conclusion and Recommendations

After reviewing the findings in the above analysis, the addition of a cogeneration system, which will produce heating, cooling, and power for the University Ridge complex, would offer many advantages as well as a few disadvantages over the current configuration. The biggest advantages are the reduction of emissions as compared to the national grid, reduced energy costs, and a payback period within a reasonable time frame. However, all of these pros come at a drawback in that the cogeneration system has a higher first cost and requires more maintenance to maintain reliable operation.

In the end, the benefits greatly outweigh the negatives and is an environmentally conscious decision as well as a fiscally sound solution.

References

- ASHRAE. 2004. ANSI/ASHRAE Standard 90.1-2004 Energy Standard. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.
- ASHRAE. 2004. ANSI/ASHRAE Standard 62.1-2004 Ventilation for Acceptable Indoor Air Quality. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.
- Energy Information Agency: www.eia.doe.gov/. 2007
- Federal Highway Administration. U.S. Department of Transportation. http://www.fhwa.dot.gov. 2007
- Orlando, Joseph A. 1996. *Cogeneration Design Guide*, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, Georgia.
- Petcher, Neil. 2002. Combined Heating, Cooling & Power Handbook: Technologies and Applications. Lilburn, Georgia.

Software

TRANE TRACE 700 v 4.1.1 2001.

RETScreen International. CHP3 v3.6 2007 < www.retscreen.org>

RETScreen International. PV3 v3.2 2007 < www.retscreen.org>

"Cost Works 2005." 2004. R.S. Means Company.

HVAC Solution. HVAC Solution, Inc. v Educational 4.0.3. 2007

Manufacturers

- Bell & Gossett, ITT Industries, Bell & Gossett Pump Selection: http://www.bellgossett.com/selectpumps.stm. 2007
- Marley Update, Cooling Tower Selection: qtcapps.marleyct.com/update/update.htm. 2007
- Uni-Solar, United Solar Ovonic: http://www.unisolar.com. 2007
- UTC Power, A United Technologies Company: http://www.utcpower.com

Acknowledgements

I would like to thank firstly, everyone at Greenman-Pedersen Inc. and especially the mechanical department for all of the experience that I gained at my time there and for providing me with all the necessary information to accomplish my thesis.

The Pennsylvania State University faculty and the Department of Architectural Engineering faculty especially my advisors Jae-Wong Jeon and especially Dr. Freihaut for being helpful and supportive.

I would also like to acknowledge my peers and friends for all the help and support through the past couple of years.

Finally, I would not be where I am today without the support of my parents and family.

Appendix A

Mechanical Load Calculations

SYSTEM SUMMARY DESIGN CAPACITY QUANTITIES By ae

			C00	LING					HEATI	NG		
System Description	System Type	Main System Capacity ton	Auxiliary System Capacity ton	Optional Vent Capacity ton	Cooling Totals ton	Main System Capacity Btu/h	Auxiliary System Capacity Btu/h	Preheat Capacity Btu/h	Reheat Capacity Btu/h	Humidification Capacity Btu/h	Optional Vent Capacity Btu/h	Heating Totals Btu/h
Terminal A/C	Packaged Terminal Air Conditior	171	0	0	171	-650,017	0	0	0	0	0	-650,017
Heating only	Unit Heaters	0	0	0	0	-64,400	0	0	0	0	0	-64,400
Commons	Packaged Terminal Air Conditior	6	0	0	6	-60,288	0	-21,338	0	0	0	-60,288
Totals		177	0	0	177	-774,705	0	-21,338	0	0	0	-774,705

* The building peaked at hour 14 month 7 with a capacity of 178 tons.

ELECTRICAL PEAK CHECKSUMS

By ae

Alternative: 1 ESU Housing Study Yearly Time of Peak: 18(Hr) 7(Month)

Equipment Description		Electrical Demand (kw)	Percent of Total (%)
Cooling Equipment			
Air-cooled chiller - 001		178.08	48.87
	Sub total	178.08	48.87
Miscellaneous			
Lights		64.27	17.64
Base Utilities		0.00	0.00
Misc Equipment		122.01	33.49
	Sub total	186.28	51.13
	Total	364.36	100

MONTHLY ENERGY CONSUMPTION

By ae

Alternative: 1 ESU Housing Study

					Month	nlv Enera	v Consum	ption					
Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Electric													
On-Pk Cons. (kWh) Off-Pk Cons. (kWh)	60,410 80,775	54,211 72,829	70,899 76,191	67,713 79,060	81,040 83,676	86,734 83,036	82,868 101,112	92,878 85,908	76,320 85,469	75,615 80,150	68,107 76,712	59,105 83,613	875,900 988,529
On-Pk Demand (kW) Off-Pk Demand (kW)	287 314	289 312	329 362	318 347	327 338	341 345	364 354	358 345	337 339	311 349	327 348	326 329	364 362
Gas													
On-Pk Cons. (therms) Off-Pk Cons. (therms)	95 94	82 88	39 48	12 20	0 0	0 0	0 0	0 0	0 0	13 20	29 32	55 76	325 378
On-Pk Demand (therms/hr) Off-Pk Demand (therms/hr)	5 7	1 1	1 1	0 1	0 0	0 0	0 0	0 0	0 0	0 1	1 1	1 1	5 7
Building Energy Consumpti Source Energy Consumptio Floor Area =	on = n =		50,049 149,096 128,547	Btu/(ft2- Btu/(ft2- ft2	year) year)								

Appendix B

Electric Utility Bill

Charges from Met-Ed this billing period When contacting an Electric Generation Supplier, please provide the customer numbers below. 2 Call Met-Ed at 1-800-545-7741 with questions on these charges.

Met-Ed Basic Charges

Customer Number: 0804331178 000 Customer Charge	6411045 -	General	Seco	ondary 3 Pl	nase Service	- ME_GS3_01F	16.74
Generation Charges	34,080	KWH	х	0.048070			1,638.23
Transmission Charges	32.080	кwн	х	0.000000		0.00	
	2,000	KWH	X	0.002830		5.66	
	102.5	KW	х	0.780000		79.95	
	5.0	KW	х	0.000000		0.00	
Total Transmission Charges						85.61	85.61
Distribution Charges	12,580	KWH	х	0.006600		83.03	
-	19,500	KWH	X	0.007200		140.40	
	2,000	KWH	X	0.035000		70.00	
	102.5	KW	Х	4.570000		468.43	
	5.0	KW	Х	0.000000		0.00	
Total Distribution Charges						761.86	761.86
Transition Charges	2,000	KWH	х	0.002010		4.02	
-	19,500	KWH	х	0.000860		16.77	
	12,580	KWH	X	-0.005810		-73.09	
	5.0	KW	Х	0.000000		0.00	
	102.5	KW	Х	4.610000		472.53	
I Transition Charges				•		420.23	420.23 32.44
State Sales Tax				an a			177.31
Total Met-Ed Charges							\$ 3,132.42
Detail P	ayment	and Ad	just	ment Info	ormation		
Date		Referenc	e			Amount	
Payments:						0.000.04	
08/22/06						-3,280.64	-
Total Payments							<u>-3,280.64</u>
Total Payments and Adjustments						•	-\$3,280.64
	Met	er Read	ling	Informa	tion		
General Secondary 3 Phase Servic	e						
Meter Number	G28	337850		······································			
Present KWH Reading (Actual)		2,821					
Previous KWH Reading (Actual)		2,608					
Difference		213					
Multiplier		160					
Kilowatt Hours Used		34,080					
Metered Load in KW		0.6/2					
Billed Load in KW/KVA		107.5					

Account Number: 10 00 62 8311 2 6 Invoice Number: 95041457020

Page 4 of 4

Usage Information

50000 40000 30000 20000 10000 0 S М J A S 0 n F М A . 1 A-Actual E-Estimate C-Customer N-No Usage

Usage Comparison

Sep 05	Sep 06
1275	1136
72	69
33	30
	409,280
	34,107
	Sep 05 1275 72 33

A Message About Pricing

Generation prices and charges are set by the electric generation supplier you have chosen. The Public Utility Commission regulates distribution prices and services.

The Federal Energy Regulatory Commission regulates transmission prices and services.

Appendix C

Pure Comfort 240M Equipment Data

16.0 SYSTEM PERFORMANCE AND OPERAT

A United Technologies Company

PERFORMANCE - 59° (Standard ISO) DAY¹, continued

	MODE	L 240M	MODEL	. 300M	MODEL 360M	
1000 1000	ENGLISH	SI	ENGLISH	SI	ENGLISH	SI
ISO – Power/Cooling (Microturbines + Chilled Water)						
Gross Power Output 90 psig (620 kPa) Natural Gas Supply to Microturbine	240 kW	240 kW	300 kW	300 kW	360 kW	360 kW
Gross Electrical Efficiency (LHV) ± 2%	28	28	28	28	27 	27
Net Power Output ² 10 psig (69 kPa) Natural Gas Supply to Fuel Gas Booster	227 kW	227 kW ⁸²	284 kW ⁸⁵	284 kW	Effort (VH I) vorteion (1HV) 4 341 kW ² tut	Gross Flectric 341 kW Net Power Out
Net Electrical Efficiency (LHV) ² ±2%	26	26	26	26	26	26
Gross System Efficiency ± 5%	85	85	83	83	80 construction of the second	80
Net System Efficiency (LHV) ² ± 5%	84	84	n in Mariana	0). 1	79	79
Nominal Cooling Capacity 3 ± 5%	142 RT	500 kW	171 RT	602 kW	198 RT	696 kW
Chiller Coefficient of Performance (COP)	1.30	1.30	1.29	1.29	1.26	1.26
Chilled Water Flow Rate Pressure Drop 11 0-3 2014	297 gpm 26 ft	19 l/s 77 kPa	358 gpm 38 ft	23 l/s 114 kPa	415 gpm 50 ft	26 l/s 149 kPa
Cooling Water Flow Rate Pressure Drop	494 gpm 33 24 ft 333	ε 31 l/s 000.0 71 kPa _{⊃ 818}	34 ft - 100	е 38 l/s 102 kPa _{это} л	691 gpm) noi 45 ft heams 45 ft	44 l/s 134 kPa
Fuel Consumption (LHV)	3,000 MBh	3,100,000 kJ/hr	3,700 MBh	3,900,000 kJ/hr	4,500 MBh	4,700,000 kJ/hr
Microturbine Exhaust Gas Temperature	604°F 💮 🐴	5 TT 318° C @ A	5 87 606° F	5 at 319° C	609° F bhuo	321° C
Chiller Exhaust Gas Temperature	b da 236° F 🕥 Að	0 20 113° C 🕥 A	6 88 249° FC @ A	b að 121° C	262° F bould	128° C
Microturbines Sound Level 4.5	76 dBA @ 33 ft	76 dBA @ 10 m	77 dBA @ 33 ft	77 dBA @ 10 m	78 dBA @ 33 ft	78 dBA @ 10 m
Chiller/Heater Sound Level ⁵	65 dBA @ 33 ft	65 dBA @ 10 m	65 dBA @ 33 ft	65 dBA @ 10 m	65 dBA @ 33 ft	65 dBA @ 10 m
System Sound Level 4.5	76 dBA @ 33 ft	76 dBA @ 10 m	77 dBA @ 33 ft	77 dBA @ 10 m	78 dBA @ 33 ft	78 dBA @ 10 m

Rating based on 59° F (15° C) ambient temperature at sea level, 60% RH, at ≤ 7 iwc microturbine backpressure. 1.

Inclusive of parasitic power for fuel gas booster and chiller; fuel gas booster inlet pressure = 10 psig.

Rating based on ARI 560, latest edition, 44° F out (2.4 gpm/ton) chilled water; 67° F (4.0 gpm/ton) cooling water; fouling factor 0.00025 ft² hr F/Btu for absorber and condenser, 0.0001 ft² hr F/Btu for evaporator. 3. Rating based on ARI 560, latest edition, 6.7° C out (0.043 L/s per kW)) chilled water; 29.4° C (0.072 L/s per kW)) cooling water; fouling factor 0.000044 m² • °C/W for absorber and condenser, 0.0000176 m² • °C/W for evaporator. Subtract 7 ± 2 dB if using optional silencers. No PureComfortTM system model will exceed the 85 decibel, 8 hour time weighted average, OSHA hearing protection

4.

5. threshold under normal operation.

Rating based on ARI 560, latest edition, 140° F hot water out; 0.0001 ft² hr F/Btu evaporator fouling factor. Rating based on ARI 560, latest edition, 54.4° C in, 60° C hot water out; 0.0000176 m² • °C/W for evaporator. 6.

alonies Competin

an a salara makakamana

PERFORMANCE - 59° (Standard ISO) DAY¹, continued

	MODEL 240M		MODE	L 300M	MODEL 360M	
	ENGLISH	SI	ENGLISH	SI	ENGLISH	SI SI
ISO – Power/140° F Heating (Microturbines + Heated Water)						
Gross Power Output 90 psig (620 kPa) Natural Gas Supply to Microturbine	240 kW	240 kW	300 kW	300 kW	360 kW	360 kW
Gross Electrical Efficiency (LHV) ± 2%	28	28	28	28	27	27
Net Power Output ² 10 psig (69 kPa) Natural Gas Supply to Fuel Gas Booster	230 kW	230 kW	287 kW	287 kW	344 kW	344 kW
Net Electrical Efficiency (LHV) ² ± 2%	27	27	26	26	26	26
Gross System Efficiency ± 5%	71	71	71	71	70	70
Net System Efficiency (LHV) ² ± 5%	70	70	70	70	69	69
Nominal Heating Capacity ⁶ ± 5%	1,282 MBh	376 kW	1,601 MBh	469 kW	1,928 MBh	565 kW
Hot Water Flow Rate Pressure Drop	297 gpm 26 ft	19 l/s 77 kPa	358 gpm 38 ft	23 l/s 114 kPa	415 gpm 50 ft	26 l/s 149 kPa
Fuel Consumption (LHV)	3,000 MBh	3,100,000 kJ/hr	3,700 MBh	3,900,000 kJ/hr	4,500 MBh	4,700,000 kJ/hr
Microturbine Exhaust Gas Temperature	604° F	318° C	606°F	319°C	609° F	321° C
Chiller Exhaust Gas Temperature	245° F	118° C	248°F	120°C	253° F	123° C
Microturbines Sound Level 4,5	76 dBA @ 33 ft	76 dBA @ 10 m	77 dBA @ 33 ft	77 dBA @ 10 m	78 dBA @ 33 ft	78 dBA @ 10 m
Chiller/Heater Sound Level ⁵	65 dBA @ 33 ft	65 dBA @ 10 m	65 dBA @ 33 ft	65 dBA @ 10 m	65 dBA @ 33 ft	65 dBA @ 10 m
System Sound Level 4,5	76 dBA @ 33 ft	76 dBA @ 10 m	77 dBA @ 33 ft	77 dBA @ 10 m	78 dBA @ 33 ft	78 dBA @ 10 m

Rating based on 59° F (15° C) ambient temperature at sea level, 60% RH, at ≤ 7 iwc microturbine backpressure. 1

2.

Inclusive of parasitic power for fuel gas booster and chiller; fuel gas booster inlet pressure = 10 psig. Rating based on ARI 560, latest edition, 44° F out (2.4 gpm/ton) chilled water; 67° F (4.0 gpm/ton) cooling water; fouling factor 0.00025 ft² hr F/Btu for absorber and condenser, 0.0001 ft² hr F/Btu for evaporator. 3. Rating based on ARI 560, latest edition, 6.7° C out (0.043 L/s per kW)) chilled water; 29.4° C (0.072 L/s per kW)) cooling water; fouling factor 0.000044 m² • °C/W for absorber and condenser, 0.0000176 m² • °C/W for evaporator.

4.

Subtract 7 ± 2 dB if using optional silencers. No PureComfortTM system model will exceed the 85 decibel, 8 hour time weighted average, OSHA hearing protection 5. threshold under normal operation.

Rating based on ARI 560, latest edition, 140° F hot water out; 0.0001 ft² hr F/Btu evaporator fouling factor. 6. Rating based on ARI 560, latest edition, 54.4° C in, 60° C hot water out; 0.0000176 m² • °C/W for evaporator.

A United Technologies Company

PERFORMANCE – 95° DAY¹- continued

	MODEL 240M		MODE	L 300M	MODEL 360M		
	ENGLISH	SI	ENGLISH	SI	ENGLISH	SI	
ARI – Power/Cooling (Microtubines + Chilled Water)							
Gross Power Output 90 psig (620 kPa) Natural Gas Supply to Microturbine	206 kW	206 kW	256 kW	256 kW	304 kW	304 kW	
Gross Electrical Efficiency (LHV) ± 2%	25	25	25 101 80	25	25 (6	25	
Net Power Output ⁷ 10 psig (69 kPa) Natural Gas Supply to Fuel Gas Booster	193 kW	193 kW	239 kW	239 kW	285 kW	285 kW	
Net Electrical Efficiency (LHV) ⁷ ± 2%	23	23	23	23	23	23	
Gross System Efficiency ± 5%	77	77 Wal 88	76	76	74	74	
Net System Efficiency (LHV) ⁷ ± 5%	76	76	74	74 163804	8 and 172 of (198	72	
Nominal Cooling Capacity 8 ± 5%	124 RT	436 kW	149 RT 💦	524 kW	173 RT	608 kW	
Chiller Coefficient of Performance (COP)	1.20	1.20	1.19	1.19	1.18	1.18	
Chilled Water Flow Rate Pressure Drop	297 gpm 26 ft	19 l/s 77 kPa	358 gpm 38 ft	23 l/s 114 kPa	415 gpm 50 ft	26 l/s 149 kPa	
Cooling Water Flow Rate Pressure Drop	494 gpm 24 ft	31 l/s 71 kPa	597 gpm 34 ft	38 l/s 102 kPa	691 gpm 45 ft	44 l/s 134 kPa	
Fuel Consumption (LHV)	2,800 MBh	3,000,000 kJ/hr	3,500 MBh	3,700,000 kJ/hr	4,200 MBh	4,500,000 kJ/hr	
Microturbine Exhaust Gas Temperature	630° F	332° C	630° F	332° C	632° F	334° C	
Chiller Exhaust Gas Temperature	287° F	141° C 000.	298° F	148° C	309° F	154° C	
Microturbines Sound Level 5,6	76 dBA @ 33 ft	76 dBA @ 10 m	77 dBA @ 33 ft	77 dBA @ 10 m	78 dBA @ 33 ft	78 dBA @ 10 m	
Chiller/Heater Sound Level ⁶	65 dBA @ 33 ft	65 dBA @ 10 m	65 dBA @ 33 ft	65 dBA @ 10 m	65 dBA @ 33 ft	65 dBA @ 10 m	
System Sound Level 5,6	76 dBA @ 33 ft	76 dBA @ 10 m	77 dBA @ 33 ft	77 dBA @ 10 m	78 dBA @ 33 ft	78 dBA @ 10 m	

1. Rating based on 95° F (35° C) ambient temperature at sea level, 46% RH, at ≤ 7 iwc microturbine backpressure.

2. Inclusive of parasitic power for fuel gas booster and air seal blower; fuel gas booster inlet pressure = 10 psig.

3. Grid connect only.

4. Meets California Air Resources Board (CARB) 2003 requirements.

5. Subtract 7 ± 2 dB if using optional silencers.

 No PureComfortTM system model will exceed the 85 decibel, 8 hour time weighted average, OSHA hearing protection threshold under normal operation.

7. Inclusive of parasitic power for fuel gas booster and chiller.

8. Rating based on ARI 560, latest edition, 44 °F out (2.4 gpm/ton) chilled water; 85° F (4.0 gpm/ton) cooling water; fouling factor 0.00025 ft² hr F/Btu for absorber and condenser, 0.0001 ft² hr F/Btu for evaporator. Rating based on ARI 560, latest edition, 6.7° C out (0.043 L/s per kW) chilled water; 29.4° C (0.072 L/s per kW) cooling water; fouling factor 0.000044 m² • °C/W for absorber and condenser, 0.0000176 m² • °C/W for evaporator.

Copyright 2006 UTC Power

In Fechnologies Cempany

PERFORMANCE – 32° DAY1- continued

	MODEL 240M		MODE	L 300M	MODEL 360M	
	ENGLISH	SI	ENGLISH	SI	ENGLISH	SI
32° F Day – Power/140° F Heating (Microturbines + Heated Water)						
Gross Power Output 90 psig (620 kPa) Natural Gas Supply to Microturbine	240 kW	240 kW	300 kW	300 kW	360 kW	360 kW
Gross Electrical Efficiency (LHV) ± 2%	29	29	29	29	29	29
Net Power Output ⁷ 10 psig (69 kPa) Natural Gas Supply to Fuel Gas Booster	231 kW	231 kW	288 kW	288 kW	346 kW	346 kW
Net Electrical Efficiency (LHV) 7 ± 2%	28	28	28	28	28	28
Gross System Efficiency ± 5%	69	69	69	69	68	68
Net System Efficiency (LHV) ⁷ ± 5%	68	68	67	67	67	67
Nominal Heating Capacity ⁸ ± 5%	1,100 MBh	324 kW	1,381 MBh	405 kW	1,660 MBh	487 kW
Hot Water Flow Rate Pressure Drop	297 gpm 26 ft	19 L/s 77 kPa	358 gpm 38 ft	23 L/s 114 kPa	415 gpm 50 ft	26 L/s 149 kPa
Fuel Consumption (LHV)	2,800 MBh	2,900,000 kJ/hr	3,500 MBh	3,700,00 kJ/hr	4,200 MBh	4,500,000 kJ/hr
Microturbine Exhaust Gas Temperature	573° F	301° C	575° F	301° C	577° F	303° C
Chiller Exhaust Gas Temperature	238° F	115° C	242° F	117° C	245° F	119° C
Microturbines Sound Level 5,6	76 dBA @ 33 ft	76 dBA @ 10 m	77 dBA @ 33 ft	77 dBA @ 10 m	78 dBA @ 33 ft	78 dBA @ 10 m
Chiller/Heater Sound Level ⁶	65 dBA @ 33 ft	65 dBA @ 10 m	65 dBA @ 33 ft	65 dBA @ 10 m	65 dBA @ 33 ft	65 dBA @ 10 m
System Sound Level 5,6	76 dBA @ 33 ft	76 dBA @ 10 m	77 dBA @ 33 ft	77 dBA @ 10 m	78 dBA @ 33 ft	78 dBA @ 10 m

1. Rating based on 32° F (0° C) ambient temperature at sea level, 60% RH, at ≤ 7 iwc microturbine backpressure.

2. Inclusive of parasitic power for fuel gas booster and air seal blower; fuel gas booster inlet pressure = 10 psig.

3. Grid connect only.

4. Meets California Air Resources Board (CARB) 2003 requirements.

5. Subtract 7 ± 2 dB if using optional silencers.

- 6. No PureComfort[™] system model will exceed the 85 decibel, 8 hour weighted average, OSHA hearing protection threshold under normal operation.
- 7. Inclusive of parasitic power for fuel gas booster and chiller, fuel gas booster inlet pressure = 10 psig.
- 8. Rating based on ARI 560, latest edition, 140° F hot water out; 0.0001 ft² hr F/Btu evaporator fouling factor.

Rating based on ARI 560, latest edition, 54.4° C in, 60° C hot water out; 0.0000176 m² • °C/W for evaporator.

on hased on ARI 580 latest edition .54.4° C in .60° C hot w. or

15.0 DIMENSIONS

PureComfort[™] Model 240M System

ND VIEW

2

PureComfort[™] Model 300M System

SIDE VIEW

HSLE	ENC	MODEL
331		Overall Length A

MODEL	ENG	LISH	SI
Overall Length A	21'-6"	258"	6553 mm
Overall Width B	22'-6"	270"	6858 mm
Overall Height C	15'-6"	186"	4724 mm

Appendix D

Cooling Tower Equipment Data

Job Information -----

University Ridge

Selected By -----

SPX Cooling	Technologies Contact ——
Marley Cooling	Technologies, Inc.

7401 W. 129 Street Tel 1-800-462-7539 Overland Park, KS 66213 info@marleyct.spx.com

Cooling Tower Definition ------

Manufacturer	Marley	Fan Motor Speed	1200 rpm
Product	NC Class	Fan Motor Capacity per cell	7.500 BHp
Model	NC8302DL1	Fan Motor Output per cell	7.500 BHp
Cells	1	Fan Motor Output total	7.500 BHp
CTI Certified	Yes	Air Flow per cell	62330 cfm
Fan	7.000 ft, 8 Blades	Air Flow total	62330 cfm
Fan Speed	313 rpm, 6883.2 fpm	ASHRAE 90.1 Performance	90.7 gpm/Hp
Fans per cell	1		
Model Group	Low Noise Fan (L)		
Conditions			
Tower Water Flow	494.0 gpm	Air Density In	0.07094 lb/ft ³
Hot Water Temperature	95.00 °F	Air Density Out	0.07142 lb/ft ³
Range	10.00 ° F	Humidity Ratio In	0.01712
Cold Water Temperature	85.00 ° F	Humidity Ratio Out	0.02789
Approach	7.00 ° F	Wet-Bulb Temp. Out	86.62°F
Wet-Bulb Temperature	78.00 °F	Estimated Evaporation	5.6 gpm
Relative Humidity	50 %	Total Heat Rejection	2461300 Btu/h

• This selection satisfies your design conditions.

Weights & Dimensions ----- Minimum Enclosure Clearance -----

noighte a bhileheite				
-	Per Cell	Total	Clearance required on	air inlet sides of tower
Shipping Weight	5380 lb	5380 lb	without altering perform	nance. Assumes no
Max Operating Weight	11640 lb	11640 lb	air from below tower.	
Width	15.500 ft	15.500 ft		
Length	7.896 ft	7.896 ft	Solid Wall	4.216 ft
Height	10.198 ft		50 % Open Wall	3.000 ft
Static Lift	9.411 ft			

Weights and dimensions do not include options; refer to sales drawings. For CAD layouts refer to file NC8302.dxf

Cold Weather OperationHeater Sizing (to prevent freezing in the collection basin during periods of shutdown)Heater kW/Cell12.09.07.56.04.53.0Ambient Temperature °F-21.75-5.253.0011.2519.5027.75

Appendix E

Pump Selections

Bell & Gossett®

Log Out My Schedule

	DETAIL	SUMMARY	
Pump Series:	1510	Pump Size:	1-1/2BC
Flow Rate: (USGPM)	99	Total Head: (ft.)	438
Pump Speed (RPM) 3525		NPSH req (ft)	22.3
Weight: (lbs) 590		Cost Index:	100
Suction Size: (in)	2	Suction Velocity (fps)	9.5
Discharge Size: (in)	1.5	Discharge Velocity: (fps)	15.6
Impeller Diameter: (in)	9.5	Efficiency: (%)	46.45
Max Impeller Dia (in)	9.5		
Max Flow (USGPM)	310	Duty Flow/Max Flow (%)	0.32
Flow @ BEP (USGPM)	251	Min. Rec. Flow: (USGPM)	40
Motor Power, HP:	40	Frame Size:	324T
Pump Power (BHP)	23.31		
Max Power (BHP)	41.74	Aprox Wt (lbs)	

Another Selection Generate Submittal	Download CAD	Back To Pumps
--------------------------------------	--------------	---------------

Bell & Gossett[®]

Log Out My Schedule

	DETAIL SUMMARY						
Pump Series:	1531	Pump Size:	3AC				
Flow Rate: (USGPM)	385	Total Head: (ft.)	34				
Pump Speed (RPM) 1750		NPSH req (ft)	4.8				
Weight: (lbs) 180		Cost Index:	100				
Suction Size: (in)	4	Suction Velocity (fps)	9.7				
Discharge Size: (in) 3		Discharge Velocity: (fps)	16.7				
Impeller Diameter: (in)	7.	Efficiency: (%)	78.66				
Max Impeller Dia (in)	7.						
Max Flow (USGPM)	551	Duty Flow/Max Flow (%)	0.7				
Flow @ BEP (USGPM)	300	Min. Rec. Flow: (USGPM)	80				
Motor Power, HP:	5	Frame Size:	184JM				
Pump Power (BHP)	4.30						
Max Power (BHP)	4.84	Aprox Wt (lbs)					

Another Selection	Generate Submittal	Download CAD	Back To Pumps
-------------------	--------------------	--------------	---------------

Appendix F

Mechanical Energy Analysis Data

RETScreen Energy Model - Combined cooling, heating & power project

		consumption -	Fuel	Capacity	delivered	Clean Energy
Proposed case system summary	Fuel type	unit	consumption	(kW)	(MWh)	production credit?
Power						
Base load	Natural gas	mmBtu	13,442	240	1,030	
Peak load	Electricity	MWh	1,581	112	1,581	
Electricity exported to grid					1	
			Total	352	2,611	
Heating			-			
Base load	Recovered heat			406	1,745	
Peak load	Natural gas	mmBtu	2,077	293	396	
			Total	699	2,141	
Cooling			-			
Base load	Heating system			436	1,546	
Peak load	Free cooling			186	27	
			Total	622	1,573	
					Complet	e Cost Analysis sheet

RETScreen Load & Network Design - Combined cooling, heating & power project

Heating project	Unit											
Site conditions	Estimate	Notes/Range	Monthly inputs									
Nearest location for weather data	Allentown	See Weather Database		°C-d	°F-d		°C-d	°F-d		°C-d	°F-d	
Heating design temperature	°C -11.6 11	1 °F -40 to 15 °C	Month	<18°C	<65°F	Month	<18°C	<65°F	Month	<18°C	<65°F	
Annual heating degree-days below 18°C	°C-d 3,045 5,48	0 °F-d <u>Complete Monthly inputs</u>	January	648	1,167	May	67	120	September	0	0	See Weather Database
Domestic hot water heating base demand	% 0%	0% to 25%	February	545	981	June	0	0	October	193	348	
Equivalent degree-days for DHW heating	°C-d/d 0.0	0 to 10 °C-d/d	March	434	782	July	0	0	November	354	638	
Equivalent full load hours	h 1,972		April	244	440	August	0	0	December	559	1,006	
Base case heating system	Single building - space heating											
Heated floor area for building	ft2 128 547											
Fuel time	Natural ass - mmBtu											
Seasonal efficiency	% 85%											
Heating load calculation	10 00 /S											
Heating load for building	Btu/ft ² 5.7											
Total heating demand	million Btu 1.445											
Total peak beating load	million Btu/h 0.7											
Fuel consumption - annual	mmBtu 1.700											
Fuel rate	\$/mmBtu 13.330											
Fuel cost	\$ 22.657											
Proposed case energy efficiency measures												
End-use energy efficiency measures	% 0%											
Net peak heating load	million Btu/h 0.7											
Net heating demand	million Btu 1,445											

RETScreen Load & Network Design - Combined cooling, heating & power project

Cooling project	Unit														
Site conditions		Estimate		Notes/Range		Monthly inpu	its								
Nearest location for weather data		Allentown		See Weather Database			°C-d	°F-d		°C-d	°F-d		°C-d	°F-d	
Cooling design temperature	°C	31.1	88.0 °F	10 to 47 °C		Month	>10°C	>50°F	Month	>10°C	>50°F	Month	>10°C	>50°F	
Annual cooling degree-days above 10°C	°C-d	1,589	2,860 °F-d	Complete Monthly inputs		January	0	0	May	181	326	September	241	433	See Weather Database
						February	0	0	June	325	584	October	55	98	
Equivalent full load hours	h	2,526				March	0	0	July	412	742	November	0	0	
						April	0	0	August	376	677	December	0	0	
Base case cooling system		Single building - process cooli	ng												
		1													
Cooled floor area for building	tt ²	128,547													
Fuel type		Electricity													
Seasonal efficiency	%	500%													
Cooling load calculation															
Peak process cooling load	RTh	177.0													
Process cooling load characteristics		Detailed													
Equivalent full load hours - process cooling	h	2,526		Complete monthly proces	s load										
Total cooling demand	RTh	447,137													
Total peak cooling load	RT	177.0													
Fuel consumption - annual	MWh	315													
Fuel rate	\$/kWh	0.092													
Fuel cost		\$ 28,903													
Proposed case energy efficiency measures															
End-use energy efficiency measures	%	0%													
Net peak cooling load	RT	177.0													
Net cooling demand	RTh	447,137													

RETScreen Load & Network Design - Combined cooling, heating & power project

Complete Equipment Selection sheet

Complete Equipment Selection sheet

RETScreen Equipment Selection - Combined cooling, heating & power project

Return to Energy Model sheet

RETScreen Cost Analysis - Combined cooling, heating & power project

ettings - Univeristy Ridge - East Stroudsbu	urg, PA							
Pre-feasibility analysis		Cost referen	ice					
				С	ost reference		None	
		Second cur	rency					
tial costs (credits)		Unit	Quantity		Unit cost		Amount	Relative costs
Feasibility study								
		cost	1	\$	- 1	\$	-	
	Sub-total:					\$	-	0.0%
Development				•		^		
	Cub total	COST	1	\$	-	\$	-	0.00/
Engineering	Sub-total:					Þ	-	0.0%
Engineering		cost	1	¢		¢	_	
	Sub-total:	0031		Ψ		¢		0.0%
Power system	oub-total.					Ψ		0.070
Base load - Gas turbine		kW	240	\$	2.500	\$	600.000	
Peak load - Grid electricity		kW	112	Ŷ	2,000	ŝ	-	
Road construction		km				\$	-	
Transmission line		km				\$	-	
Substation		project				\$	-	
Energy efficiency measures		project	1	\$	5,000	\$	5,000	
Custom		cost	1	\$	6,000	\$	6,000	
						\$	-	
	Sub-total:				-	\$	611,000	45.6%
Heating system			_					
Base load - Gas turbine		kW	406.5	\$	40	\$	16,259	
Peak load - Boiler		kW	292.8			\$	-	
Energy efficiency measures		project	1	\$	7,000	\$	7,000	
Custom		cost	1	\$	2,000	\$	2,000	
	Cub tatalı					\$ ¢	-	4.00/
Casting sustan	Sub-total:				:	\$	25,259	1.9%
Base load Absorption		DT	124.0	¢	1 371	¢	170 004	
Base load - Absorption			52.0	φ	1,371	¢ ¢	170,004	
Energy efficiency measures		project	1	¢	7 000	φ ¢	7 000	
Custom		cost	1	\$	5,000	φ \$	5,000	
		0001	· ·	Ŷ	0,000	\$	-	
	Sub-total:					\$	182.004	13.6%
Balance of system & miscellaneous								
		cost	1	\$	376,787	\$	376,787	
Contingencies		%	10.0%	\$	1,195,050	\$	119,505	
Interest during construction		8.00%	6 month(s)	\$	1,314,555	\$	26,291	
	Sub-total:				-	\$	522,583	39.0%
tal initial costs						\$	1,340,846	100.0%
		11mit	0		Unit exet		A	Deletius esete
		Unit	Quantity		Unit cost		Amount	Relative costs
Darta & Johaur		project	0	¢	2 000	¢		
		project	0	ф Ф	3,000	¢ ¢	-	
Contingencies		<u> </u>	0.0%	\$	1,000	¢ ¢	_	
Contingencies	Sub total:	70	0.078	Ψ		¢		0.0%
Fuel	Sub-ioial:					φ	-	0.076
Natural das		mmRtu	15 519	\$	1 1 9 9	\$	18 605	
Electricity		MWh	1.581	\$	120.000	\$	189.682	
	Sub-total:		.,	Ψ	0.000	\$	208,286	100.0%
otal annual costs	535 total.				=	\$	208,286	100.0%
						Ψ	200,200	100.070

Periodic costs (credits)	Unit	Year	Unit cost	Amount	
Overhaul	cost	5	\$ 6,000	\$ 6,000	
				\$ -	
				\$ -	
End of project life				\$	Go to GHG Analysis sheet

RETScreen Greenhouse Gas (GHG) Emission Reduction Analysis - Combined cooling, heating & power project

Settings - Univeristy Ridge - East Stroudsburg, PA	
GHG Analysis	Simplified analysis Standard analysis Custom analysis

Base case electricity system (Baseline) GHG emission T&D GHG emission factor (excl. T&D) losses factor % tCO2/MWh tCO2/MWh Country - region Fuel type United States of America (USA) 0.690 0.726 All types 5.0%

 $\hfill\square$ Baseline changes during project life

Base case system GHG summary (Baseline)

Fuel type	Fuel mix %	Fuel consumption MWh	GHG emission factor tCO2/MWh	GHG emission tCO2
Natural gas	14.2%	498	0.197	98
Electricity	85.8%	3,006	0.726	2,184
Total	100.0%	3,505	0.651	2,282

Proposed case system GHG summary (Combined cooling, heating & power project) Fuel GHG emission Fuel mix GHG emission consumption factor Fuel type % MWh tCO2/MWh tCO2 Natural gas 74.2% 4,548 0.197 898 Electricity 25.8% 1,581 0.726 1,148 2,046 100.0% 6,129 Total 0.334 Electricity exported to grid MWh 1 T&D losses 1.0% 0 0.726 0 Total 2,046

GHG emission reduction summary							
Combined cooling, heating	Base case GHG emission tCO2	Proposed case GHG emission tCO2			Gross annual GHG emission reduction tCO2	GHG credits transaction fee %	Net annual GHG emission reduction tCO2
& power project	2,282	2,046			236	0%	236
Net annual GHG emission reduction	236	tCO2	is equivalent to	48.0	Cars & light trucks	s not used <u>Complete Financia</u>	al Summary sheet

RETScreen Financial Summary - Combined cooling, heating & power project

Annual fuel cost summary - Univeristy Ri	idge - East Stro	oudsburg PA						Yearly o	ash flows		
Annual ruer cost summary - Oniversity K	luge - Last offe	Energy	End-use					Year	Pre-tax	After-tax	Cumulative
	Peak load	demand	energy rate	Fuel cost				#	s s	S	\$
Base case system	kW	MWh	\$/MWh	\$				0	(402.254)	(402,254)	(402.254
Power	366	2.691	91.90	247,313				1	(41,178)	(41,178)	(443,432
Heating	215	423	53.51	22,657				2	(39,329)	(39,329)	(482,761
Cooling	622	1,573	18.38	28,903				3	(37,443)	(37,443)	(520,204
Fuel cost - base case				298,872				4	(35,519)	(35,519)	(555,724
								5	(40,513)	(40,513)	(596,236
								6	(31,555)	(31,555)	(627,792
		Energy	End-use					7	(29,514)	(29,514)	(657,306
	Capacity	delivered	energy rate	Fuel cost				8	(27,431)	(27,431)	(684,737
Proposed case system	kW	MWh	\$/MWh	\$				9	(25,307)	(25,307)	(710,044
Power	352	2,611	79.49	207,559				10	(31,204)	(31,204)	(741,249
Heating	699	2,141	0.34	727				11	112,704	112,704	(628,545)
Cooling	622	1,573	0.00	0				12	114,958	114,958	(513,587)
Fuel cost - proposed case				208,286				13	117,257	117,257	(396,331
								14	119,602	119,602	(276,729
								15	112,646	112,646	(164,083
Financial parameters			Project costs and	savings/income	summary			16	124,434	124,434	(39,649
General			Initial costs					17	126,922	126,922	87,274
Fuel cost escalation rate	%	2.0%	Feasibility study		0.0%	\$	-	18	129,461	129,461	216,734
Inflation rate	%	3.0%	Development		0.0%	\$	-	19	132,050	132,050	348,785
Discount rate	%	10.0%	Engineering		0.0%	\$	-	20	123,854	123,854	472,639
Project life	yr	25	Power system		45.6%	\$	611,000	21	137,385	137,385	610,024
			Heating system		1.9%	\$	25,259	22	140,133	140,133	750,157
Finance			Cooling system		13.6%	\$	182,004	23	142,935	142,935	893,092
Incentives and grants	\$	70.000	Balance of system	n & misc.	39.0%	\$	522,583	24	145,794	145,794	1,038,886
Debt ratio	%	70.0%	Total initial costs	S	100.0%	\$	1,340,846	25	136,147	136,147	1,175,033
Debt	\$	938,592						1			
Equity	\$	402,254						1			
Debt interest rate	%	7.00%	A	d = h + =							
Debt term	yr	10	Annual costs and	debt payments		•					
Debt payments	\$/yr	133,634	O&IVI			\$	-				
			Fuel cost - propos	sed case		\$	208,286				
Income tax analysis			Tetal appual cos	10 yrs		\$	133,634				
Income tax analysis			Total annual COS	515		Þ	341,921				
			Periodic costs (cr	odite)							
			Overbaul - 5 vrs	eunsj		¢	6 000				
			Overnaul - 5 yrs			φ	0,000				
			Annual savings ar	nd income							
			Fuel cost - base c	220		¢	208 872				
			1 401 0001 5400 0			Ψ	200,072				
Annual income			Electricity export i	income		\$	57				
Customer premium income (rebate)						Ψ	01				
,											
			Total annual sav	ings and income		\$	298.930				
				·							
			Financial viability								
			Pre-tax IRR - equ	ity		%	6.2%				
			Pre-tax IRR - asse	ets		%	0.8%				
			After-tax IRR - eq	uity		%	6.2%				
			After-tax IRR - as	sets		%	0.8%				
Electricity export income			Simple payback			yr	14.8	1			
Electricity exported to grid	MWh	1	Equity payback			yr	16.3				
Electricity export rate	\$/MWh	70.00	Net Present Value	e (NPV)		\$	(255,112)				
Electricity export income	\$	57	Annual life cycle s	savings		\$/yr	(28,105)				
Electricity export escalation rate	%	2.0%	Benefit-Cost (B-C) ratio		-	0.37				
		-	Debt service cove	erage		-	0.69				
Clean Energy (CE) production income			GHG reduction co	ost		\$/tCO2	119				
			Cumulative cash f	flows graph							
			1 500 000								
			1,000,000								1
		_	4 000 000								
GHG reduction income			a 1,000,000								
			s (1								
Net GHG reduction	tCO2/yr	236	ð								
Net GHG reduction - 25 yrs	tCO2	5,894	500,000 +								
			as								
			0						/		
			≩ ₀∔								
			1	1 2 3 4	5 6	7 8	9 10 11 12	13 14	15 16 17 1	8 19 20 21	22 23 24 25
			l S	_ 0 4		Ŭ		/			
			د (500 000)								
			(000,000)								1
			(1.000.000)								
			(1,000,000)								
							Year				
E											

Appendix G

Photovoltaic Analysis and Equipment

Solar Shingles SHR-17

- Power Rating 17W
- Lightweight & Flexible
- No Support Structures Needed
- Virtually Unbreakable (No Glass)
- Shadow & High Heat Tolerant
- Delivers Up To 20% More Real Energy

- Residential Grid Connected Systems
- Commercial Grid Connected Systems
- Schools & Institutions
- Apartment Complexes
- Condominiums
- Renovation Or New Construction

UNI-SOLAR® shingles are unique and have

been honored with the prestigious Popular Science Grand Award, "Best of What's New (Environmental Technology)," and Discover Magazine's "Technological Innovation Award" for best innovation (Environment). The PV shingle permits the roof of commercial buildings or residential homes to evolve from mere protection from the weather to a source of electrical power. The flexible, thin film solar cell shingle blends into a roofing pattern or traditional asphalt shingles.

Why Do UNI-SOLAR Products Outperform Others?

All solar panels are rated in terms of peak power output (watts). Outdoors, under normally higher operating temperatures, solar panel performance changes, depending on

temperature, solar spectrum (light color) and related effects. *UNI-SOLAR* products are less affected by temperature than monocrystalline or polycrystalline solar technology products. The result is up to 20% more delivered energy.**

** Source Solfest, "Module Shoot Out"

Specifications	
Model	SHR-17
Rated Power (Watts)	17
Max Power Point VMPP (V)	9
Max Power Point IMPP (A)	1.9
Open-Circuit Voltage (Volts)	13
Short-Circuit Current (Amps)	2.4
Shingle Length (in./mm)	86.4 in./2195 mm
Shingle Width (in./mm)	12 in. (5 in. exposed area)/305 mm
Shingle Thickness (in./mm)	0.1 in./4 mm
Weight (lb./kg)	4.8 lb./2.2 kg
Customer-Supplied Substrate	Wood Deck and Fire retardant underlayment
Minimum Slope	3:12 (15°)
Maximum Slope	21:12 (60°)
Warranty on Power Output	20 Year

During the first 8-10 weeks of operation, electrical output exceeds specific ratings. Power output may be higher by 15%, operating voltage may be higher by 11% and operating current may be higher by 4%. Electrical specifications (±10%) are based on measurements performed at standard test conditions of 1000 W/m² irradiance, Air Mass 1.5, and Cell Temperature of 25°C after long-term stabilization. Actual performance may vary up to 10% from rated power due to low temperature operation, spectral and other related effects. Maximum system open-circuit voltage not to exceed 600 VDC. Specifications subject to change without notice.

Quality Assurance, Proven Reliability

UNI-SOLAR shingles comply with the following qualification tests:

- UL Listed Up To 600 VDC as A Prepared Roofing Cover (4)
- Capable Of Withstanding 80 mph Wind Speeds
- Meets IEC 61646 Requirements
- Thermal Cycling
- Humidity-Freeze Test
- Damp Heat Test
- UV-Test
- Wet Insulation Test
- Mechanical Load Test
- Hail Impact Test
- Robustness of Terminations Test

Corporate Sales & Marketing Office:

United Solar Ovonic LLC 3800 Lapeer Rd. Auburn Hills, MI 48326 USA Tel: 248.475.0100 Toll Free: 800.843.3892 Fax: 248.364.0510 Email: info@uni-solar.com *www.uni-solar.com*

North American Sales Office:

United Solar Ovonic LLC 8920 Kenamar Dr., Suite 205 San Diego, CA 92121 USA Tel: 858.530.8586 Toll Free: 800.397.2083 Fax: 858.530.8686 Email: westerninfo@uni-solar.com

Product Description

Each SHR (solar home roofing) shingle utilizes the proprietary Triple Junction solar cells manufactured by *UNI-SOLAR*. These cells are made in a roll-to-roll deposition process on a continuous roll of stainless steel. The result is a unique, flexible, lightweight solar cell. The *UNI-SOLAR* PV Shingles are encapsulated in UV stabilized polymers making them exceptionally durable. Bypass diodes are connected across each cell, allowing the modules to produce power even when partially shaded.

The Solar Shingle will replace the conventional shingle. The shingles are UL Listed both as an electricity generator and as a prepared roofing cover. Each shingle has a pair of wires coming off the back of the shingle that will be fed through the roof deck for wiring inside the attic. The solar shingle wires can be "shorted" during installation. The wires from adjacent shingles are connected together using moisture resistant butt splices. The shingles are mounted over 30 lb. felt or a fire resistant underlayment (e.g. Elk[®] Versa Shield.)

Your UNI-SOLAR Distributor:

UNI-SOLAR.

#D09-01

© Copyright 2004 United Solar Ovonic - All Rights Reserved

European Office:

Dennewartstrasse 25-27

Tel: +49.241.9631131

Fax: +49.241.9631138

United Solar Ovonic Europe GmbH

D-52068 Aachen — GERMANY

Email: europeinfo@uni-solar.com

UNI-SOLAR.

RETScreen[®] Financial Summary - Photovoltaic Project

Project chame Renewable energy delivered University Rdge East Struct/Struct, PA Nominal PV array power KWp 37.74 Renewable energy delivered MWn 49.073	Annual Energy Balance						Yearly C	ash Flows		
Priopet location East Stroudsburg, PA Nominal PV array power KVp 37.74 Renewable energy delivered MVh 49.073 (22.2990) (22.2990) (22.2990) (22.2990) (22.2990) (22.2990) (22.2990) (22.2990) (22.2990) (22.990) (23.762) (48.021) (4.27.14) (4.27.14) (4.27.14) (4.27.14) (4.27.14) (4.27.14) (4.27.14) (4.27.14) (4.27.14) (4.27.14) (4.27.14) (4.27.14) (4.27.11) (4.27.11) (4.27.11) (4.27.11) (4.27.11) (4.27.11) (4.27.11) (4.27.11) (4.27.11) (4.27.11) (4.27.11) (4.27.11) (4.27.11) (4.27.11) (4.27.11) (4.27.11) (4.27.11) (4.27.11) (4.27.11) (4.	Project name		University Ridge				Year	Pre-tax	After-tax	Cumulative
Renewable energy delivered MVh 49.073 Firm RE capacity KW On-grd Firm RE capacity KW On-grd f.inancial Parameters On-grd Avoided cost of energy SkWh O.919 Avoided cost of energy SkWh O.919 Debt ratio % 60.0% RE production credit furation rate % 0.00% Received escalation rate % 0.011 Production credit furation % 0.050 RE production credit furation rate % 0.005 Production credit furation rate % 0.005 Production credit furation rate % 0.005 Production rate % 0.005 Initial Costs Annual Costs and Debt \$ Project Costs and Savings Annual Costs and Debt \$ Initial Costs Annual Costs and Debt \$ Periodic life 0.0% \$ - Project Costs and Savings - 0.041 \$ Initial Costs	Project location	Eas	t Stroudsburg, PA	Nominal PV array power	kWp	37.74	#	\$	\$	\$
Renergy clevered MWh 49.073 Firm RE capacity KW Application type On-ord Jandel Parameter SkWh Application type On-ord Avoided cost of energy SkWh Q19 SkWh Q19 Debt interest rate % 655% Production credit divation yr 25 Debt interest rate % 655% 9 37.768 700000 33.738 83.738 33.738 83.738 33.738 9 37.768 9 37.768 9 37.768 9 37.768 9 37.788 11 44.171 12 19.377 13 44.211 14 42.048 14 40.548 14 50.076 14 40.548 14 50.076 16 65.646 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>(222,990)</td><td>(222,990)</td><td>(222,990)</td></tr<>							0	(222,990)	(222,990)	(222,990)
Firm RE capacity KW	Renewable energy delivered	MWh	49.073				1	14,519	14,519	(208,471)
Firm RE capacity WW							2	16,879	16,879	(191,592)
Application type On-grid Financial Parameters 4 21,980 21,980 (150,275) Addied col anarty \$WWh 0.015 Debt infraor % 80,075, RE production credit \$WWh 0.015 Debt infraor % 80,075, RE production credit \$WWh 0.015 Debt infraor % 80,075, RE production credit \$WWh 0.015 Debt infraor % 80,075, RE production credit \$WWh 0.015 Debt infraor % 80,075, RE production credit \$WWh 0.015 Debt infraor % 0.05,074 Income tax analysis? yes/no No 10 44,211 44,211 48,310 Inflation \$ 0.05,075 Income tax analysis? yes/no No 12 10,045,48 44,310 Inflation \$ 0.05,8 0.05,85 0.05,85 12,019 12,920 22,920 22,920 22,920 22,920 23,926 22,926	Firm RE capacity	kW	-				3	19,357	19,357	(172,235)
Financial Parameters 5 24.692 24.692 24.692 24.692 24.692 4125.528 Avoided cost of energy RE production credit duration RE production credit duration RE credit escalation rate \$ 0.015 Deb t ratio % 60.01% 8 33.738 33.738 (77.60 33.738 (77.60 33.738 (77.60 33.738 (77.60 33.738 (77.60 33.738 (77.60 33.738 (77.60 33.738 (78.60 3.3578 (77.60 33.738 (78.60 3.3578 (77.60 33.738 (77.60 37.60 3.378 (78.60 3.3578 (78.60 3.3578 (78.60 3.3578 (78.60 3.3778 (78.60 3.3778 (78.60 3.3778 (78.60 3.3778 (78.60 3.3778 (78.60 3.3778 (78.60 3.3778 (78.60 3.3738 (78.60 3.3738 (78.60 3.3738 (78.60 3.3738 (79.60 3.3738 (79.60 3.3738 (79.60 3.3738 (79.60 3.3738 (79.60 (79.68 </td <td>Application type</td> <td></td> <td>On-grid</td> <td></td> <td></td> <td></td> <td>4</td> <td>21,960</td> <td>21,960</td> <td>(150,275)</td>	Application type		On-grid				4	21,960	21,960	(150,275)
Financial Parameters 6 27.622 27.622 (98.021) Avoided cost of energy RE production credit RE production credit duration RE production credit duration reteil duration RE credit escalation rate % 0.919 (0.015) Debt ratio Debt interest rate % 60.0% (07.447) 8 33.738 33.738 (33.708) RE production credit duration RE credit escalation rate % 2.0% (0.0548 Debt term yr 2.51 Interest scalation rate % 2.0% (0.078) 2.0% (0.078) 10 40.548 40.048 43.900 Inflation credit % 2.0% (0.078) 2.0% (0.078) 11 44.211 48.111 12 (19.167) (19.167) (19.167) (19.167) (19.167) 14 66.789 5.0% 17 70.375 70.375 70.375 16 66.7465 5.0% 19 80.944 63.946 53.966 Inflation credit yr 2.5 2.5 2.192.037 2.132.038.915 17 70.375 70.377 70.375 70.367							5	24,692	24,692	(125,583)
Avoided cost of energy RE production credit RE production credit RE production credit RE production credit RE credit escalation rate \$	Financial Parameters						6	27,562	27,562	(98,021)
Avoided cost of energy SkWh 0.919 Debt ratio % 60.0% 8 33.733 33.733 (33.709) RE production credit waration rate % 0.015 Debt interest rate % 20.60 37.060 37.060 33.733 (33.709) RE production credit waration rate % 20.04 Debt interest rate % 20.57 10 40.548 40.548 43.900 RE production credit waration rate % 20.06 11 44.211 48.11 48.11 88.11 11 44.211 48.11 88.11 11 44.211 48.11 88.11 11 44.211 48.11 88.11 11 44.211 48.11 11.1 81.11 11.1 48.12 81.11 11.1 44.211 48.11 11.1 11.1 48.12 11.1							7	30,574	30,574	(67,447)
RE production credit SR/Wh 0.015 Debt term yr 25 RE production credit duration rate % 20% 10 40.548 40.548 43.900 RE credit escalation rate % 20% 11 44.211 88.111 income tax analysis? yes/no No 11 44.211 84.217 (19.187) 68.924 Energy cost escalation rate % 5.066 11 14.4211 86.337 56.337 177.356 Inflation % 5.066 11 17.757 77.375 77.3486 Inflation % 5.076 177.366 16.62,865 66.623 449.516 Project life yr 20 20 22.99 98.865 98.865 98.865 20.865 22.99 23.95,915 22.99 24.82,97 25.208 119.612 1.95,528 22.90 21.92,02 21.92,02 21.92,02 21.92,02 21.92,02 21.92,02 21.92,02 21.92,02 21.92,02 21.92,02 21.92,02 21.92,02 21.92,02 21.92,02 21.92,02 21.92,02 2	Avoided cost of energy	\$/kWh	0.919	Debt ratio	%	60.0%	8	33,738	33,738	(33,709)
RE production credit duration yr 25 Debt term yr 25 RE credit escalation rate % 20% Income tax analysis? yes/no No Income tax analysis? yes/no No 10 40.548 40.548 43.900 Income tax analysis? yes/no No 11 44.211 44.211 68.317 Income tax analysis? yes/no No 13 52.096 52.096 121.019 14 44.211 44.211 44.211 46.311 12.096 52.096 121.019 14 46.337 56.337 177.356 173.396 117.7375 737.3966 Discount rate % 2.5% 98.65 66.628 66.628 66.628 67.098 Initial Costs Annual Costs and Debt \$ 98.944 60.924 21.920	RE production credit	\$/kWh	0.015	Debt interest rate	%	8.5%	9	37,060	37,060	3,351
RE credit escalation rate % 2.0% Income tax analysis? yes/no No 11 44.211 44.211 48.111 12 (1).617 (1).617 (1).617 (1).617 Energy cost escalation rate % 2.0% 12.019 60.789 60.789 Energy cost escalation rate % 2.5% 60.789 60.789 60.789 60.789 Project Costs and Savings 9.0% 2.5% 11 70.375	RE production credit duration	yr	25	Debt term	yr	25	10	40,548	40,548	43,900
Income tax analysis? yes/no No 12 (19,187) (19,19,193)	RE credit escalation rate	%	2.0%				11	44,211	44,211	88,111
Energy cost escalation rate % 5.0% 121.019 Inflation % 5.0% 233.016 Discount rate % 9.0% 237.373 Project Costs and Savings 9.0% 25 Initial Costs Annual Costs and Debt 0.66.628 Feasibility study 0.0% \$ - Project Costs and Savings 5.046 33.563 Initial Costs - 0.08 \$ Feasibility study 0.0% \$ - Development 0.0% \$ - Energy equipment 7.8% \$ 378.060 Balance of equipment 7.8% \$ 378.060 Balance of equipment \$ 26.93 3.563 Inverter Repair/Replacement \$ 50.000 \$ Schedule yr # 12.24 \$ 736 Inverter Repair/Replacement \$ 50.000 \$ Schedule yr # 12.24 \$ 736 Periodic Costs (Credits) Inverter Repair/Replacement \$ 50.000 \$ Schedule yr # 12.24 Inverter Rapit Rand ROI % 13.8% Schedule yr # 12.24				Income tax analysis?	yes/no	No	12	(19,187)	(19,187)	68,924
Energy cost escalation rate % 5.0% Inflation % 2.5% Discount rate % 2.5% Project Costs and Savings 18 75.530 449.516 19 80.842 80.862 86.783 303.611 17 70.375 70.375 70.375 70.375 70.375 Project Costs and Savings ************************************							13	52,096	52,096	121,019
Energy cost escalation rate % 5.0% 2.5% Inflation % 2.5% Discount rate % 9.0% Project Costs and Savings 90.0% Initial Costs Annual Costs and Debt Frequenting 0.0% \$ Development 0.0% \$ Energy equipment 67.8% \$ 378.060 Balance of equipment 72.4% \$ \$ 15.60.789 Salance of equipment 72.4% \$ 57.476 Energy equipment 67.8% \$ 378.060 Incentives/Grants \$ S - Predict Costs (Credits) Inverter Repair/Replacement \$ 50,000 S - End of project life - \$ - S - - S - - S - - - Inverter Repair/Replacement \$ 50,000 Schedule yr # 12,24 - Inverter Repair/Replacement \$ 50,000 Schedule yr # 12,24 - S - - - - End of project life -							14	56,337	56,337	177,356
Energy cost escalation rate % 5.0% 303.611 Inflation % 2.5% 333.986 Discount rate % 9.0% 449.516 Project life yr 2.51 25 105.404 80.444 53.044 Project life yr 2.51 22.51 22.58 22.88.865 98.665 98.665 80.655 22.98.665 98.665 80.655 23.105.446 105.446 105.446 105.446 105.446 913.996 25 119.612 1.055.528 24.21.20.2 21.20.20 25.20.20 25.528 26.833 86.623 80.655 303.661 80.6550 23.26.833 24.21.20.2 21.20.20 25.20.20 25.20.20 25.20.20 25.21.20 25.20.20 25.20.20 25.21.20 25.20.20 25.21.20 25.20.20 25.21.20 25.20.20 25.20.20 25.21.20 25.20.20 25.21.20 25.20.20 25.21.20 25.20.20 25.21.20 25.20.20 25.21.20 25.20.20 25.21.20 25.20.20 25.21.20 25.20.20 25.21.20 25.20.20 25.21.20 25.21.20 25.21.20<							15	60,789	60,789	238,145
Energy cost escalation rate % 5.0% Inflation % 2.5% Discount rate % 9.0% Project Costs and Savings 9.0% Project Costs and Savings 9.0% Initial Costs Annual Costs and Debt Feasibility study 0.0% \$ Energy equipment 0.0% \$ Development 0.0% \$ Energy equipment 67.8% \$ Balance of equipment 7.4% \$ 119.612 Initial Costs Annual Savings or Income Initial Costs - Total \$ 32.683 Incentives/Grants \$ S Inverter Repair/Replacement \$ 50,000 Schedule yr # 12.24 \$ Year-to-positive cash flow Yr 12.4 Year-to-positive cash flow Yr 13.894 Annual Life Cycle Savings \$ 13.894 Annual Life Cycle Savings \$ 13.894 Project Iffe - \$ - Lincentives/Grants \$ - Reand ROI % 13.6%							16	65,465	65,465	303,611
Inflation % 2.5% Discount rate % 9.0% Project life yr 25 Froject Costs and Savings 86.628 66.73.0449.516 Initial Costs Annual Costs and Debt 29.865 98.865 98.865 Feasibility study 0.0% \$ - O&M \$ 80.444 913.996 Energy equipment 0.0% \$ - O&M \$ 80.628 86.628 66.72.89 92.597 709.685 23 98.865 98.865 98.865 98.865 98.865 98.865 98.850 22 98.865 98.950 22 105.446 105.944 913.995 25 119.612 1.961.2 1.965.528 Energy equipment C7.8% 378.060 Annual Costs and Debt - Total \$ 33.663 33.663 Balance of equipment 27.4% \$ 152.4776 Annual Savings or Income Annual Savings - Total \$ 45,835 19.6 5 5 . . Energy explands \$ 	Energy cost escalation rate	%	5.0%				17	70,375	70,375	373,986
Discount rate % 9.0% Project life yr 25 Project Costs and Savings 19 80.944 80.944 530.460 Project Costs and Savings 42.59 98.6628 86.628	Inflation	%	2.5%				18	75,530	75,530	449,516
Project life yr 25 Project Costs and Savings 20 86,628 96,628 96,628 96,628 98,865 98,855 22 98,865 98,865 98,855 22 19,612 119,612 1,055,528 119,612 1,055,528 25 119,612 1,055,528 Energy equipment 27.4% \$ 32,693 Annual Savings or Income \$ Annual Savings - Total \$ 45,098 \$ \$ \$ \$ \$ \$ \$ \$ \$	Discount rate	%	9.0%				19	80,944	80,944	530,460
Project Costs and Savings 21 92,597 92,597 709,685 Initial Costs Annual Costs and Debt 22 98,865 98,865 808,550 Development 0.0% \$ - O&M \$ 080 22 98,865 98,865 808,550 23 105,446 913,996 24 21,920 21,920 93,515 25 119,612 119,612 1,055,528 24 21,920 21,920 93,515 25 119,612 1,055,528 24 21,920 21,920 93,515 25 119,612 1,055,528 24 21,920 21,920 93,515 25 119,612 1,055,528 24 21,920 21,920 23,936,915 25 119,612 1,055,528 24 21,920 21,920 23,95,915 25 119,612 1,055,528 24 21,920 21,920 23,936,915 25 119,612 1,055,528 26,936 Annual Savings or Income 45,098 45,098 45,098 45,098 34,855 34,855 36 36 36 36 36 36 36 36	Project life	yr	25				20	86,628	86,628	617,088
Project Costs and Savings 22 98,865 93,850 Energy equipment 0.0% \$ 778,060 Annual Savings or Income \$ 33,536 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$<							21	92,597	92,597	709,685
Initial Costs Annual Costs and Debt 23 105,446 913,996 24 21,920 21,920 935,915 25 119,612 119,612 1,055,528 Development 0.0% \$ - Debt payments - 25 yrs \$ 32,683 24 21,920 21,920 935,915 25 119,612 119,612 1,055,528 Development 0.0% \$ - Debt payments - 25 yrs \$ 32,683 33,563 Annual Costs and Debt - Total \$ 33,563 24 24 24,920 21,920 935,915 25 119,612 1,055,528 25 119,612 1,055,528 26 33 Annual Costs and Debt - Total \$ 33,563 33,563 26 26 27 736 Annual Savings or Income Energy savings/income \$ 45,098 10,612 10,612 10,612 10,612 10,612 10,612 10,612 10,612 119,612 10,612 10,612 10,612 10,612 10,612 10,612 10,612 10,612	Project Costs and Savings						22	98,865	98,865	808,550
Initial Costs Annual Costs and Debt 24 21,920 21,920 935,915 Feasibility study 0.0% \$ - O&M \$ 080 Development 0.0% \$ - Debt payments -25 yrs \$ 32,663 Energy equipment 77.8,6% \$ 378,06% \$ 33,563 33,563 Balance of equipment 77.4% \$ 152,479 Annual Costs and Debt - Total \$ 33,563 Incentives/Grants \$ 26,936 Annual Savings or Income Energy savings/income \$ 45,098 Incentives/Grants \$ - RE production credit income - 25 yi \$ 736 Periodic Costs (Credits) - RE production cost? yes/no No Inverter Repair/Replacement \$ 50,000 Schedule yr # 12,24 - - Pre-tax IRR and ROI % 13.6% S 222,990 No Simple Payback yr 12.4 - - - Year-to-positive cash flow yr 8.9 Project equity \$ 222,990 <							23	105,446	105,446	913,996
Feasibility study 0.0% \$ - O&M \$ 880 Development 0.0% \$ - Fuel \$ - Engineering 0.0% \$ - Debt payments - 25 yrs \$ 32,683 Energy equipment 67.8% \$ 378,060 Annual Costs and Debt - Total \$ 33,563 Balance of equipment 27.4% \$ 152,479 Annual Costs and Debt - Total \$ 33,563 Initial Costs - Total 100.0% \$ 557,476 Energy savings/income \$ 45,098 Incentives/Grants \$ - RE production credit income - 25 yr \$ 736 Periodic Costs (Credits) Inverter Repair/Replacement \$ 50,000 Schedule yr # 12,24 - Inverter Repair/Replacement \$ 50,000 Schedule yr # 12,24 - - Financial Feasibility Calculate energy production cost? yes/no No No Pre-tax IRR and ROI % 13.6% - - - Simple Payback yr 12.4 - -	Initial Costs			Annual Costs and Debt			24	21,920	21,920	935,915
Development 0.0% \$ - Fuel \$ - Engineering 0.0% \$ - Debt payments - 25 yrs \$ 32,683 Energy equipment 67.8% \$ 378,060 Annual Costs and Debt - Total \$ 33,563 Balance of equipment 27.4% \$ 152,479 Annual Savings or Income Initial Costs - Total 100.0% \$ 557,476 Energy savings/income \$ 45,098 Incentives/Grants \$ - RE production credit income - 25 yr \$ 736 Periodic Costs (Credits) Inverter Repair/Replacement \$ 50,000 Schedule yr # 12,24 \$ Inverter Repair/Replacement \$ 50,000 Schedule yr # 12,24 \$ \$ End of project life - \$ - \$ - \$ \$ Pre-tax IRR and ROI % 13.6% \$ - \$ \$ \$ Simple Payback yr 12.4 \$ \$ 334,485 \$	Feasibility study 0.0%	\$	-	O&M	\$	880	25	119,612	119,612	1,055,528
Engineering 0.0% \$ - Debt payments - 25 yrs \$ 32.683 Energy equipment 67.8% \$ 378,060 Annual Costs and Debt - Total \$ 33,563 Balance of equipment 27.4% \$ 152,479 Annual Costs and Debt - Total \$ 33,563 Initial Costs - Total 100.0% \$ 557,476 Energy savings or Income E Intentives/Grants \$ - RE production credit income - 25 yi \$ 736 Periodic Costs (Credits) Inverter Repair/Replacement \$ 50,000 Schedule yr # 12,24 \$ Inverter Repair/Replacement \$ 50,000 Schedule yr # 12,24 \$ \$ Pre-tax IRR and ROI % 13.6% \$ - \$ \$ Simple Payback yr 12.4 \$ \$ 334,485 Simple Payback yr 13,984 Petoget equity \$ 222,990 Net Present Value - NPV \$ 13,984 Petoget equity \$ 334,485 Annual Life Cycle Savings \$ 13,984 Debt payments	Development 0.0%	\$	-	Fuel	\$	-				
Energy equipment 67.8% \$ 378,060 Annual Costs and Debt - Total \$ 33,563 Balance of equipment 27.4% \$ 152,479 Annual Savings or Income Energy savings/income \$ 48,8% 26,936 Annual Savings or Income Energy savings/income \$ 45,098 Initial Costs - Total 100.0% \$ 557,476 Energy savings/income \$ 45,098 Incentives/Grants \$ - RE production credit income - 25 yi \$ 736 Periodic Costs (Credits) Annual Savings - Total \$ 45,835 Inverter Repair/Replacement \$ 50,000 Schedule yr # 12,24 \$ End of project life - \$ - - \$ - End of project life - \$ - - No After-tax IRR and ROI % 13.6% \$ 334,485 Simple Payback yr 12.4 \$ 334,485 Year-to-positive cash flow \$ 334,485 334,485 <td< td=""><td>Engineering 0.0%</td><td>\$</td><td>-</td><td>Debt payments - 25 yrs</td><td>\$</td><td>32,683</td><td></td><td></td><td></td><td></td></td<>	Engineering 0.0%	\$	-	Debt payments - 25 yrs	\$	32,683				
Balance of equipment 27.4% \$ 152,479 Miscellaneous 4.8% \$ 26,936 Initial Costs - Total 100.0% \$ 557,476 Incentives/Grants \$ RE production credit income - 25 yi \$ 736 Incentives/Grants \$ RE production credit income - 25 yi \$ 736 Periodic Costs (Credits) Inverter Repair/Replacement \$ 50,000 Schedule yr # 12,24 Inverter Repair/Replacement \$ S Calculate energy production cost? yes/no No Financial Feasibility Calculate energy production cost? yes/no No Pre-tax IRR and ROI % 13.6% 13.6% Simple Payback yr 12.4 Year-to-positive cash flow yr 8.9 Project debt \$ 334,485 Annual Life Cycle Savings \$ 13,984 Debt payments \$/yr 32,683 Benefit-Cost (B-C) ratio - 1.62 Debt payments \$/yr 32,683	Energy equipment 67.8%	\$	378,060	Annual Costs and Debt - Total	\$	33,563				
Miscellaneous 4.8% \$ 26,936 Annual Savings or Income Initial Costs - Total 100.0% \$ 557,476 Energy savings/income \$ 45,098 Incentives/Grants \$ - RE production credit income - 25 yi \$ 736 Periodic Costs (Credits) - RE production credit income - 25 yi \$ 45,835 Inverter Repair/Replacement \$ 50,000 Schedule yr # 12,24 \$ End of project life - \$ - - \$ Fre-tax IRR and ROI % 13.6% Simple Payback Yor Simple Payback yr 12.4 - \$ Year-to-positive cash flow yr 8.9 Project debt \$ 334,485 Annual Life Cycle Savings \$ 13,984 Debt payments \$/yr 32,683 Benefit-Cost (B-C) ratio - 1.62 Debt payments \$/yr 32,683	Balance of equipment 27.4%	\$	152,479			-				
Initial Costs - Total 100.0% \$ 557,476 Energy savings/income \$ 45,098 Incentives/Grants \$	Miscellaneous 4.8%	\$	26,936	Annual Savings or Income						
Incentives/Grants \$	Initial Costs - Total 100.0%	\$	557,476	Energy savings/income	\$	45,098				
Incentives/Grants \$				6, 6		,				
Periodic Costs (Credits) Annual Savings - Total \$ 45,835 Inverter Repair/Replacement \$ 50,000 Schedule yr # 12,24 \$ - - \$ - - End of project life - \$ - \$ - - Pre-tax IRR and ROI % 13.6% No Pre-tax IRR and ROI % 13.6% - Simple Payback yr 12.4 Year-to-positive cash flow yr 8.9 Project debt \$ 334,485 Annual Life Cycle Savings \$ 13,984 Debt payments Benefit-Cost (B-C) ratio - 1.62 Debt service coverage	Incentives/Grants	\$	-	RE production credit income - 25 v	\$	736				
Annual Savings - Total \$ 45,835 Periodic Costs (Credits) \$ 50,000 Schedule yr # 12,24 \$ - \$ - \$ - \$ - End of project life - \$ - \$ - - Financial Feasibility Calculate energy production cost? yes/no Pre-tax IRR and ROI % 13.6% Simple Payback yr Year-to-positive cash flow yr Net Present Value - NPV \$ 13,84 Annual Life Cycle Savings \$ 13,984 Benefit-Cost (B-C) ratio -		•		1	•					
Periodic Costs (Credits) Inverter Repair/Replacement \$ 50,000 Schedule yr # 12,24 \$ - - \$ - - End of project life - \$ - \$ - - Financial Feasibility Calculate energy production cost? yes/no No Pre-tax IRR and ROI % 13.6% Simple Payback - Simple Payback yr 12.4 - Year-to-positive cash flow yr 8.9 Project debt \$ 334,485 Annual Life Cycle Savings \$ 13,984 Debt payments \$/yr 32,683 Benefit-Cost (B-C) ratio - 1.62 Debt service coverage - 1.44				Annual Savings - Total	\$	45.835				
Inverter Repair/Replacement \$ 50,000 Schedule yr # 12,24 \$ - End of project life - \$ - Financial Feasibility Calculate energy production cost? yes/no No Pre-tax IRR and ROI % 13.6% After-tax IRR and ROI % 13.6% Simple Payback yr 12.4 Year-to-positive cash flow yr 8.9 Project equity \$ 222,990 Net Present Value - NPV \$ 137,362 Project debt \$ 334,485 Annual Life Cycle Savings \$ 13,984 Debt payments \$/yr 32,683 Benefit-Cost (B-C) ratio - 1.62 Debt service coverage - 1.44	Periodic Costs (Credits)			<u> </u>	•	-,				
End of project life - - Financial Feasibility Calculate energy production cost? yes/no No Pre-tax IRR and ROI % 13.6% No After-tax IRR and ROI % 13.6% Simple Payback yr 12.4 Year-to-positive cash flow yr 8.9 Project equity \$ 222,990 Net Present Value - NPV \$ 137,362 Project debt \$ 334,485 Annual Life Cycle Savings \$ 139,484 Debt payments \$/yr 32,683 Benefit-Cost (B-C) ratio - 1.62 Debt service coverage - 1.44	Inverter Repair/Replacement	\$	50.000	Schedule vr # 12.24						
Financial Feasibility Calculate energy production cost? yes/no No Pre-tax IRR and ROI % 13.6% No After-tax IRR and ROI % 13.6% Simple Payback yr Year-to-positive cash flow yr 8.9 Project equity \$ 222,990 Net Present Value - NPV \$ 137,362 Project debt \$ 334,485 Annual Life Cycle Savings \$ 13,984 Debt payments \$/yr 32,683 Benefit-Cost (B-C) ratio - 1.62 Debt service coverage - 1.44		\$	-	, , , , , , , , , , , , , , , , , , ,						
End of project life - \$ - Financial Feasibility Calculate energy production cost? yes/no No Pre-tax IRR and ROI % 13.6% No After-tax IRR and ROI % 13.6% Simple Payback yr 12.4 Year-to-positive cash flow yr 8.9 Project equity \$ 222,990 Net Present Value - NPV \$ 137,362 Project debt \$ 334,485 Annual Life Cycle Savings \$ 13,984 Debt payments \$/yr 32,683 Benefit-Cost (B-C) ratio - 1.62 Debt service coverage - 1.44		Š	-							
Financial Feasibility Calculate energy production cost? yes/no Pre-tax IRR and ROI % 13.6% After-tax IRR and ROI % 13.6% Simple Payback yr 12.4 Year-to-positive cash flow yr 8.9 Project equity \$ 222,990 Net Present Value - NPV \$ 137,362 Project debt \$ 334,485 Annual Life Cycle Savings \$ 13,984 Debt payments \$/yr 32,683 Benefit-Cost (B-C) ratio - 1.62 Debt service coverage - 1.44	End of project life -	Š	-							
Financial FeasibilityCalculate energy production cost? yes/noPre-tax IRR and ROI%13.6%After-tax IRR and ROI%13.6%Simple Paybackyr12.4Year-to-positive cash flowyr8.9Project equity\$222,990Net Present Value - NPV\$137,362Project debt\$334,485Annual Life Cycle Savings\$13,984Benefit-Cost (B-C) ratio-1.62Debt service coverage-1.44		Ŧ								
Calculate energy production cost? yes/noNoPre-tax IRR and ROI%13.6%After-tax IRR and ROI%13.6%Simple Paybackyr12.4Year-to-positive cash flowyr8.9Project equity\$222,990Net Present Value - NPV\$137,362Project debt\$334,485Annual Life Cycle Savings\$13,984Benefit-Cost (B-C) ratio-1.62Debt service coverage-1.44	Financial Feasibility									
Pre-tax IRR and ROI%13.6%After-tax IRR and ROI%13.6%Simple Paybackyr12.4Year-to-positive cash flowyr8.9Project equity\$222,990Net Present Value - NPV\$137,362Project debt\$334,485Annual Life Cycle Savings\$13,984Benefit-Cost (B-C) ratio-1.62Debt service coverage-1.44				Calculate energy production cost?	ves/no	No				
After-tax IRR and ROI%13.6%Simple Paybackyr12.4Year-to-positive cash flowyr8.9Project equity\$222,990Net Present Value - NPV\$137,362Project debt\$334,485Annual Life Cycle Savings\$13,984Debt payments\$/yr32,683Benefit-Cost (B-C) ratio-1.62Debt service coverage-1.44	Pre-tax IRR and ROI	%	13.6%	0,1	•					
Simple Paybackyr12.4Year-to-positive cash flowyr8.9Project equity\$ 222,990Net Present Value - NPV\$ 137,362Project debt\$ 334,485Annual Life Cycle Savings\$ 13,984Debt payments\$/yr32,683Benefit-Cost (B-C) ratio-1.62Debt service coverage-1.44	After-tax IRR and ROI	%	13.6%							
Year-to-positive cash flowyr8.9Project equity\$222,990Net Present Value - NPV\$137,362Project debt\$334,485Annual Life Cycle Savings\$13,984Debt payments\$/yr32,683Benefit-Cost (B-C) ratio-1.62Debt service coverage-1.44	Simple Payback	vr	12.4							
Net Present Value - NPV \$ 137,362 Project debt \$ 334,485 Annual Life Cycle Savings \$ 13,984 Debt payments \$/yr 32,683 Benefit-Cost (B-C) ratio - 1.62 Debt service coverage - 1.44	Year-to-positive cash flow	vr	8.9	Project equity	\$	222.990				
Annual Life Cycle Savings \$ 13,984 Debt payments \$/yr 32,683 Benefit-Cost (B-C) ratio - 1.62 Debt service coverage - 1.44	Net Present Value - NPV	\$	137.362	Project debt	ŝ	334,485				
Benefit-Cost (B-C) ratio - 1.62 Debt service coverage - 1.44	Annual Life Cycle Savings	ŝ	13,984	Debt payments	\$/vr	32,683				
	Benefit-Cost (B-C) ratio	-	1.62	Debt service coverage	-	1.44				

© Minister of Natural Resources Canada 1997 - 2005.

RETScreen[®] Financial Summary - Photovoltaic Project

© Minister of Natural Resources Canada 1997 - 2005.

NRCan/CETC - Varennes

RETScreen[®] Energy Model - Photovoltaic Project

Training & Support

	ate Notes/Pange
Project name University	Ridge See Online Manual
Project location Fast Strouds	sburg, PA
Nearest location for weather data	n PA Complete SR&SI sheet
Latitude of project location °N 40.7	-90.0 to 90.0
Annual solar radiation (tilted surface) MWh/m ² 1 54	1
Annual average temperature °C 10.6	-20.0 to 30.0
System Characteristics Estima	ate Notes/Range
Application type - On-gr	rid
Grid type - Central-	-grid
PV energy absorption rate % 100.0	<mark>%</mark>
PV Array	
PV module type - a-Si	
PV module manufacturer / model # Uni-Solar/ S	SHR-17 <u>See Product Database</u>
Nominal PV module efficiency % 6.1%	6 4.0% to 15.0%
NOCT °C 50	40 to 55
PV temperature coefficient % / °C 0.119	% 0.10% to 0.50%
Miscellaneous PV array losses % 5.0%	6 0.0% to 20.0%
Nominal PV array power kWp 37.74	4
PV array area m ² 618.	7
Power Conditioning	
Average inverter efficiency % 90%	80% to 95%
Suggested inverter (DC to AC) capacity kW (AC)34.0)
Inverter capacity kW (AC) 34.0	
Miscellaneous power conditioning losses % 0%	0% to 10%
Annual Energy Decision (42.00 months analysed)	
Annual Energy Production (12.00 months analysed) Estimates	ale Noles/Range
Overall DV system officionsy 9/ 5 20/	
DV system capacity factor $0/2$ $1/2$	
Renewable energy collected MW/b 54.52	70 26
Renewable energy delivered MW/h 40 07	73

Excess RE available

Version 3.2

© Minister of Natural Resources Canada 1997 - 2005.

kWh

MWh

49,073

0.000

NRCan/CETC - Varennes

Complete Cost Analysis sheet

RETScreen[®] Solar Resource and System Load Calculation - Photovoltaic Project

Site Latitude and PV Array Orientation		Estimate	Notes/Range
Nearest location for weather data		Allentown, PA	See Weather Database
Latitude of project location	°N	40.7	-90.0 to 90.0
PV array tracking mode	-	Fixed	
Slope of PV array	0	18.5	0.0 to 90.0
Azimuth of PV array	0	18.0	0.0 to 180.0

Monthly Inputs

	Fraction of month used	Monthly average daily radiation on horizontal surface	Monthly average temperature	Monthly average daily radiation in plane of PV array	Monthly solar fraction
Month	(0 - 1)	(kWh/m²/d)	(°C)	(kWh/m²/d)	(%)
January	1.00	1.89	-2.9	2.57	-
February	1.00	2.70	-1.5	3.35	-
March	1.00	3.69	4.0	4.16	-
April	1.00	4.71	9.9	4.96	-
May	1.00	5.44	15.9	5.46	-
June	1.00	5.96	20.8	5.86	-
July	1.00	5.87	23.3	5.83	-
August	1.00	5.22	22.1	5.39	-
September	1.00	4.19	18.0	4.60	-
October	1.00	3.06	11.8	3.64	-
November	1.00	1.95	6.2	2.54	-
December	1.00	1.57	0.0	2.15	-
			Annual	Season of use	
Solar radiation (h	orizontal)	MWh/m ²	1.41	1.41	
Solar radiation (ti	Ited surface)	MWh/m²	1.54	1.54	
Average tempera	iture	°C	10.6	10.6	

Load Characteristics		Estimate	
Application type	-	On-grid	
			Return to Energy Model sheet

Version 3.2

© Minister of Natural Resources Canada 1997 - 2005.

NRCan/CETC - Varennes
RETScreen[®] Cost Analysis - Photovoltaic Project

Type of analysis:	Pre-feasibility		Currency:	\$		Cost references:	None
Initial Costs (Credits)	Unit	Quantity	Unit Cost	Amount	Relative Costs	Quantity Range	Unit Cost Range
Feasibility Study							<u>v</u>
Other - Feasibility study	Cost	1	\$ - \$	-		-	-
Sub-total :			\$	-	0.0%		
Development							
Other - Development	Cost	1	\$ - \$	-		-	-
Sub-total :			\$	-	0.0%		
Engineering							
Other - Engineering	Cost	1	\$ - \$	-		-	-
Sub-total :			\$	-	0.0%		
Energy Equipment							
PV module(s)	kWp	37.74	\$ 10,018 \$	378,060		-	-
Transportation	project	0	\$ - \$	-		-	-
Other - Energy equipment	Cost	0	\$ - \$	-		-	-
Credit - Energy equipment	Credit	0	\$ - \$	-		-	-
Sub-total :			\$	378,060	67.8%		
Balance of Equipment							
Module support structure	m ²	618.7	\$ <u>100</u> \$	61,869		-	-
Inverter	kW AC	34.0	\$ <mark>1,000</mark> \$	34,000		-	-
Other electrical equipment	kWp	37.74	\$ - \$	-		-	-
System installation	kWp	37.74	\$ <mark>1,500</mark> \$	56,610		-	-
Transportation	project	0	\$ - \$	-		-	-
Other - Balance of equipment	Cost	0	\$ - \$	-		-	-
Credit - Balance of equipment	Credit	0	\$ - \$	-		-	-
Sub-total :			\$	152,479	27.4%		
Miscellaneous			 				
Training	p-h	6	\$ 65 \$	390		-	-
Contingencies	%	5%	\$ 530,929 \$	26,546		-	-
Sub-total :			\$	26,936	4.8%		
Initial Costs - Total			\$	557,476	100.0%		
Annual Costs (Crodits)	Unit	Quantity	Unit Cost	Amount	Polativo Costo	Quantity Panga	Unit Cost Bang
O&M	Unit	Quantity	Unit Cost	Amount	Relative Costs	wuantity Kange	onit Cost Kange

O&M					_				
Property taxes/Insurance	project	0	\$	-	\$	-		-	-
O&M labour	p-h	16	\$	55	\$	880		-	-
Other - O&M	Cost	0	\$	-	\$	-		-	-
Credit - O&M	Credit	0	\$	-	\$	-		-	-
Contingencies	%	0%	\$	880	\$	-		-	-
Sub-total :						880	100.0%		
Innual Costs - Total					\$	880	100.0%		

Per	iodic Costs (Credits)		Period	Unit Cost	Amount	Interval Range	Unit Cost Range
	Inverter Repair/Replacement	Cost	12 yr	\$ 50,000	\$ 50,000	-	-
				\$ -	\$ -	-	-
				\$ -	\$ -	-	-
	End of project life		-	\$ -	\$ -	Go to G	GHG Analysis sheet

Version 3.2

© Minister of Natural Resources Canada 1997 - 2005.

NRCan/CETC - Varennes